Practical and Efficient Approximations of Nash Equilibria for Win-Lose Games Based on Graph Spectra

  • Haralampos Tsaknakis
  • Paul G. Spirakis
Conference paper

DOI: 10.1007/978-3-642-17572-5_31

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6484)
Cite this paper as:
Tsaknakis H., Spirakis P.G. (2010) Practical and Efficient Approximations of Nash Equilibria for Win-Lose Games Based on Graph Spectra. In: Saberi A. (eds) Internet and Network Economics. WINE 2010. Lecture Notes in Computer Science, vol 6484. Springer, Berlin, Heidelberg

Abstract

It is shown here that the problem of computing a Nash equilibrium for two-person games can be polynomially reduced to an indefinite quadratic programming problem involving the spectrum of the adjacency matrix of a strongly connected directed graph on n vertices, where n is the total number of players’ strategies. Based on that, a new method is presented for computing approximate equilibria and it is shown that its complexity is a function of the average spectral energy of the underlying graph. The implications of the strong connectedness properties on the energy and on the complexity of the method is discussed and certain classes of graphs are described for which the method is a polynomial time approximation scheme (PTAS). The worst case complexity is bounded by a subexponential function in the total number of strategies n and a comparison is made with a previously reported method with subexponential complexity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Haralampos Tsaknakis
    • 1
  • Paul G. Spirakis
    • 1
    • 2
  1. 1.Research Academic Computer Technology Institute (RACTI)Greece
  2. 2.Dept. of Computer Eng. and InformaticsPatras UniversityPatrasGreece

Personalised recommendations