Skip to main content

Point Source Digital In-Line Holographic Microscopy

  • Chapter
  • First Online:
Book cover Coherent Light Microscopy

Part of the book series: Springer Series in Surface Sciences ((SSSUR,volume 46))

Abstract

Point source digital in-line holography with numerical reconstruction has been developed into a new microscopy, specifically for microfluidic and biological applications, that routinely achieves both lateral and depth resolution at the submicron level in 3-D imaging. This review will cover the history of this field and give details of the theoretical and experimental background. Numerous examples from microfluidics and biology will demonstrate the capabilities of this new microscopy. The motion of many objects such as living cells in water can be tracked in 3-D at subsecond rates. Microfluidic applications include sedimentation of suspensions, fluid motion around micron-sized objects in channels, motion of spheres, and formation of bubbles. Immersion DIHM will be reviewed which effectively does holography in the UV. Lastly, a submersible version of the microscope will be introduced that allows the in situ study of marine life in real time in the ocean and shows images and films obtained in sea trials.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. D. Gabor, A new microscopic principle. Nature (London)161, 777–778 (1948)

    Article  ADS  Google Scholar 

  2. E.N. Leith, J. Upatnieks, Reconstructed wavefronts and communication theory. J. Opt. Soc. Am. 52, 1123 (1962); ibid. 53, 1377 (1963); ibid. 54, 1295 (1963)

    Article  ADS  Google Scholar 

  3. J.W. Goodman, R.W. Lawrence, Digital image formation from electronically detected holograms. Appl. Phys. Lett. 11, 77–79 (1967)

    Article  ADS  Google Scholar 

  4. P. Hariharan, Optical Holography (Cambridge University Press, Cambridge, 1996)

    Google Scholar 

  5. T. Kreis, Holographic Interferometry (Akademie Verlag, Berlin, 1996)

    Google Scholar 

  6. D. Gabor, Microscopy by reconstructed wavefronts. Proc. R. Soc. London, Ser. A 197, 454 (1949)

    Article  MATH  ADS  Google Scholar 

  7. Y. Aoki, Optical and numerical reconstruction of images from sound-wave holograms. IEEE Trans. Acoust. Speech AU-18, 258 (1970)

    Google Scholar 

  8. M.A. Kronrod, L.P. Yaroslavski, N.S. Merzlyakov, Computer synthesis of transparency holograms. Sov. Phys. Tech. Phys-U (USA) 17, 329 (1972)

    ADS  Google Scholar 

  9. T.H. Demetrakopoulos, R. Mittra, Digital and optical reconstruction of images from suboptical diffraction patterns. Appl. Opt. 13, 665 (1974)

    Article  ADS  Google Scholar 

  10. L. Onural, P.D. Scott, Digital decoding of in-line holograms. Opt. Eng. 26, 1124 (1987)

    ADS  Google Scholar 

  11. G. Liu, P.D. Scott, Phase retrieval and twin-image elimination for in-line Fresnel holograms. J. Opt. Soc. Am. A 4, 159 (1987)

    Article  ADS  Google Scholar 

  12. L. Onural, M.T. Oezgen, Extraction of three-dimensional object-location information directly from in-line holograms using Wigner analysis. J. Opt. Soc. Am. A 9, 252 (1992)

    Article  ADS  Google Scholar 

  13. H.J. Kreuzer, R.P. Pawlitzek, LEEPS, Version 1.2, A software package for the simulation and reconstruction of low energy electron point source images and other holograms (1993–1998)

    Google Scholar 

  14. H.-W. Fink, Point source for electrons and ions. IBM J. Res. Dev. 30, 460 (1986)

    Article  Google Scholar 

  15. H.-W. Fink, Point source for electrons and ions. Phys. Scripta 38, 260 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  16. W. Stocker, H.-W. Fink, R. Morin, Low-energy electron and ion projection microscopy. Ultramicroscopy 31, 379 (1989)

    Article  Google Scholar 

  17. H.-W. Fink, W. Stocker, H. Schmid, Holography with low-energy electrons. Phys. Rev. Lett. 65, 1204 (1990)

    Article  ADS  Google Scholar 

  18. H.-W. Fink, H. Schmid, H.J. Kreuzer, A. Wierzbicki, Atomic resolution in lens-less low-energy electron holography. Phys. Rev. Lett. 67, 15 (1991)

    Article  Google Scholar 

  19. H.J. Kreuzer, K. Nakamura, A. Wierzbicki, H.-W. Fink, H. Schmid, Theory of the point source electron microscope. Ultramicroscopy 45, 381 (1992)

    Article  Google Scholar 

  20. H.-W. Fink, H. Schmid, H.J. Kreuzer, In: Electron Holography, eds. by A. Tonomura, L.F. Allard, D.C. Pozzi, D.C. Joy, Y.A. Ono, State of the Art of Low-Energy Electron Holography, (Elsevier, Amsterdam, 1995), pp. 257–266

    Chapter  Google Scholar 

  21. H.-W. Fink, ,H. Schmid, E. Ermantraut, and T. Schulz, Electron holography of individual DNA molecules, J. Opt. Soc. Am. A 14, 2168 (1997)

    Article  ADS  Google Scholar 

  22. A. Gölzhäuser, B. Völkel, B. Jäger, M. Zharnikov, H.J. Kreuzer, M. Grunze, Holographic imaging of macromolecules. J. Vac. Sci. Technol. A 16, 3025 (1998)

    Article  ADS  Google Scholar 

  23. H. Schmid, H.-W. Fink, H.J. Kreuzer, In-line holography using low-energy electrons and photons; applications for manipulation on a nanometer scale. J. Vac. Sci. Technol. B 13, 2428 (1995)

    Article  Google Scholar 

  24. H.J. Kreuzer, H.-W. Fink, H. Schmid, S. Bonev, Holography of holes, with electrons and photons. J. Microsc. 178, 191 (1995)

    Google Scholar 

  25. H.J. Kreuzer, Low energy electron point source microscopy. Micron 26, 503 (1995)

    Article  Google Scholar 

  26. H.J. Kreuzer, N. Pomerleau, K. Blagrave, M.H. Jericho, Digital in-line holography with numerical reconstruction. Proc. SPIE. 3744, 65 (1999)

    Article  ADS  Google Scholar 

  27. M. Born, E. Wolf. Principles of Optics (Cambridge University Press, Cambridge, 2006)

    Google Scholar 

  28. J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, P. Klages, H.J. Kreuzer. Digital in-line holographic microscopy. Appl. Opt. 45, 836–850 (2006)

    Article  ADS  Google Scholar 

  29. J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, P. Klages, H.J. Kreuzer. Resolution power in digital holography, in ICO20: Optical Information Processing; Y. Sheng, S. Z, Y. Zhang (eds.), Proc. SPIE 6027, 637–644 (2006)

    Google Scholar 

  30. S.K. Jericho, J. Garcia-Sucerquia, Wenbo Xu, M.H. Jericho, H.J. Kreuzer. A submersible digital in-line holographic microscope. Rev. Sci. Instr. 77, 043706 1–10 (2006)

    Google Scholar 

  31. H.J. Kreuzer, M.H. Jericho, Wenbo Xu, Digital in-line holography with numerical reconstruction: three-dimensional particle tracking. Proc. SPIE 4401, 234, 2001

    Article  ADS  Google Scholar 

  32. W. Xu, M.H. Jericho, I.A. Meinertzhagen, H.J. Kreuzer, Tracking particles in 4-D with in-line holographic microscopy. Opt. Lett. 28, 164 (2003)

    Article  ADS  Google Scholar 

  33. H.J. Kreuzer, M.H. Jericho, I.A. Meinertzhagen, W. Xu, Digital in-line holography with numerical reconstruction: 4D tracking of microstructures and organisms. Proc. SPIE 5005–17, 299 (2003)

    Article  Google Scholar 

  34. J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, I. Tamblyn, H.J. Kreuzer, Digital in-line holography: 4-D imaging and tracking of micro-structures and organisms in microfluidics and biology, in ICO20: Biomedical Optics, G. von Bally, Q. Luo (eds.), Proc. SPIE 6026, 267–275 (2006)

    Google Scholar 

  35. J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, H.J. Kreuzer, Digital in-line holography applied to microfluidic studies, in Microfluidics, BioMEMS, and Medical Microsystems IV; I. Papautsky, W. Wang (eds.), Proc. SPIE 6112, 175–184 (2006)

    Google Scholar 

  36. J. Garcia-Sucerquia, W. Xu, S.K. Jericho, M.H. Jericho, H.J. Kreuzer, 4-D imaging of fluid flow with digital in-line holographic microscopy. Optik 119, 419–423 (2008)

    ADS  Google Scholar 

  37. J. Garcia-Sucerquia, D. Alvarez-Palacio, J. Kreuzer. Digital In-line Holographic Microscopy of Colloidal Systems of Microspheres, in Adaptive Optics: Analysis and Methods/Computational Optical Sensing. Meetings on CD-ROM OSA Technical Digest (CD) (Optical Society of America, 2007), paper DMB4

    Google Scholar 

  38. Wenbo Xu, M.H. Jericho, I.A. Meinertzhagen, H.J. Kreuzer, Digital in-line holography for biological applications. Proc. Natl. Acad. Sci. USA 98, 11301 (2001)

    Article  ADS  Google Scholar 

  39. N.I. Lewis, A.D. Cemballa, W. Xu, M.H. Jericho, H.J. Kreuzer, Effect of temperature in motility of three species of the marine dinoflagellate Alexandrium, in: Ed. by Bates, S.S. Proceedings of the Eighth Canadian Workshop on Harmful Marine. Algae. Can. Tech. Rep. Fish. Aquat. Sci. 2498: xi + 141, pp. 80–87 (2003)

    Google Scholar 

  40. N.I. Lewis, A.D. Cembella, W. Xu, M.H. Jericho, H.J. Kreuzer. Swimming speed of three species of the marine dinoflagellate Alexandrium as determined by digital in-line holography. Phycologia 45, 61–70 (2006)

    Article  Google Scholar 

  41. L. Repetto, E. Piano, C. Pontiggia. Lensless digital holographic microscope with light-emitting diode illumination. Opt. Lett. 29 (10), 1132–1134 (2004)

    Article  ADS  Google Scholar 

  42. J. Garcia-Sucerquia, D. Alvarez-Palacio, H.J. Kreuzer, Partially coherent digital in-line holographic microscopy. OSA/DH/FTS/HISE/NTM/OTA (2009).

    Google Scholar 

  43. P. Petruck, R. Riesenberg, M. Kanka, U. Huebner, Partially coherent illumination and application to holographic microscopy, in 4th EOS Topical Meeting on Advanced Imaging Techniques Conference 2009, pp. 71–72, (2009)

    Google Scholar 

  44. P. Petruck, R. Riesenberg, R. Kowarschik, Sensitive measurement of partial coherence using a pinhole array, in Proceedings OPTO Sensor+Test’, pp. 35–40 (2009)

    Google Scholar 

  45. M. Kanka, R. Riesenberg, H.J. Kreuzer, Reconstruction of high-resolution holographic microscopic images. Opt. Lett. 34 (8), 1162–1164 (2009). doi:10.1364/OL.34.001162

    Article  ADS  Google Scholar 

  46. M. Kanka, A. Wuttig, C. Graulig, R. Riesenberg, Fast exact scalar propagation for an in-line holographic microscopy on the diffraction limit. Opt. Lett. 35(2), 217–219 (2010)

    Article  ADS  Google Scholar 

  47. R. Riesenberg, M. Kanka, J. Bergmann, Coherent light microscopy with a multi-spot source, in T. Wilson, (ed.), Proc. SPIE, 66300I, (2007)

    Google Scholar 

  48. M. Kanka, R. Riesenberg, Wide field holographic microscopy with pinhole arrays, in Proceedings of OPTO Sensor+Test, pp. 69–72, (2006)

    Google Scholar 

  49. R. Riesenberg, A. Wuttig, Pinhole-array and lensless micro-imaging with interferograms, Proceedings of DGaO, 106. Conference, pp. A26, (2005)

    Google Scholar 

  50. A. Grjasnow, R. Riesenberg, A. Wuttig, Phase reconstruction by multiple plane detection for holographic microscopy, in T. Wilson, (ed.), Proc. SPIE, 66300 J, (2007)

    Google Scholar 

  51. A. Grjasnow, R. Riesenberg, A. Wuttig, Lenseless coherent imaging by multi-plane interference detection, in Proceedings of DGaO, 106. Conference, pp. A39, (2005)

    Google Scholar 

  52. A. Grjasnow, A. Wuttig, R. Riesenberg, Phase resolving microscopy by multi-plane diffraction detection. J. Microsc. 231(1), 115–123 (2008)

    Article  MathSciNet  Google Scholar 

  53. M. Heydt, A. Rosenhahn, M. Grunze, M. Pettitt, M.E. Callow, J.A. Callow, Digital in-line hologrpahy as a three-dimensional tool to study motile marine organisms during thier exploration of surfaces. J. Adhes. 83, 417–430 (2007)

    Article  Google Scholar 

  54. M. Heydt, P. Divos, M. Grunze, A. Rosenhahn, Analysis of holographic microscopy data to quantitatively investigate three-dimensional settlement dynamics of algal zoospores in the vicinity of surfaces. Eur. Phys. J.E. 30, 141–148 (2009)

    Article  Google Scholar 

  55. A. Rosenhahn, S. Schilp1, H.J. Kreuzer, M. Grunze, The role of inert surface chemistry in marine biofouling prevention. Phys. Chem.Chem. Phys. 12, 4275–4286 (2010). doi: 10.1039/C001968M

    Google Scholar 

  56. H.J. Kreuzer, Holographic microscope and method of hologram reconstruction US. Patent 6411406 B1, (Canadian patent CA 2376395) 25 June, (2002)

    Google Scholar 

  57. DIHM software package, copyright Resolution Optics Inc. Halifax, see also resolutionoptics.com for further information

    Google Scholar 

  58. S.K. Jericho, P. Klages, J. Nadeau, E.M. Dumas, M.H. Jericho, H.J. Kreuzer, In-line digital holographic microscopy for terrestrial and exobiological research, Planetary and Space Science 58, 701–705 (2010)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Jürgen Kreuzer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jericho, M.H., Jürgen Kreuzer, H. (2011). Point Source Digital In-Line Holographic Microscopy . In: Ferraro, P., Wax, A., Zalevsky, Z. (eds) Coherent Light Microscopy. Springer Series in Surface Sciences, vol 46. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15813-1_1

Download citation

Publish with us

Policies and ethics