Skip to main content

Miniature Differential Mobility Spectrometry (DMS) Advances towards Portable Autonomous Health Diagnostic Systems

  • Chapter
Wearable and Autonomous Biomedical Devices and Systems for Smart Environment

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 75))

Abstract

Many modern analytical instruments, such as mass spectrometry, have been developed to provide insight into the biochemical content of many different biological sample types. Typically these instruments are large bench-top machines that have very high sensitivity and specificity for the compounds they detect. However, these instruments are not mobile or autonomous, and they require highly trained personnel to operate. There have been many developments in the area of miniature chemical sensors that can maintain performance levels observed in large traditional bio-analytical instruments, but are low-power and potentially mobile and autonomous in function. Miniature differential mobility spectrometry (DMS) is a small instrument that can potentially be used in point-of-care diagnostic applications. This chapter will review the significant advances in this emerging research area, and provide insight as to how these systems could be further improved and adapted for use in autonomous health monitoring and sensing systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Miller, R.A., et al.: A MEMS radio-frequency ion mobility spectrometer for chemical vapor detection. Sensors and Actuators A: Physical 91(3), 301–312 (2001)

    Article  Google Scholar 

  2. Nazarov, E.G., et al.: Miniature differential mobility spectrometry using atmospheric pressure photoionization. Analytical Chemistry 78(13), 4553–4563 (2006)

    Article  Google Scholar 

  3. Krylov, E.V., Nazarov, E.G., Miller, R.A.: Differential mobility spectrometer: Model of operation. International Journal of Mass Spectrometry 266(1-3), 76–85 (2007)

    Article  Google Scholar 

  4. Basanta, M., et al.: Increasing analytical space in gas chromatography-differential mobility spectrometry with dispersion field amplitude programming. Journal of Chromatography A 1173(1-2), 129–138 (2007)

    Article  Google Scholar 

  5. Eiceman, G.A., et al.: Pattern recognition analysis of differential mobility spectra with classification by chemical family. Analytica Chimica Acta 579(1), 1–10 (2006)

    Article  Google Scholar 

  6. Kolakowski, B.M., Mester, Z.: Review of applications of high-field asymmetric waveform ion mobility spectrometry (FAIMS) and differential mobility spectrometry (DMS). Analyst 132(9), 842–864 (2007)

    Article  Google Scholar 

  7. Shvartsburg, A.A., et al.: Ultrafast Differential Ion Mobility Spectrometry at Extreme Electric Fields in Multichannel Microchips. Analytical Chemistry 81(15), 6489–6495 (2009)

    Article  Google Scholar 

  8. Eiceman, G.A., et al.: Separation of ions from explosives in differential mobility spectrometry by vapor-modified drift gas. Analytical Chemistry 76(17), 4937–4944 (2004)

    Article  Google Scholar 

  9. Eiceman, G.A.: Detection of explosives by differential mobility spectrometry and GC DMS. Abstracts of Papers of the American Chemical Society- ANYL 230, 320 (2005)

    Google Scholar 

  10. Morgan, J.T.: Differential mobility spectrometry applications in homeland security, clinical diagnostics and drug discovery. In: ASME International Mechanical Engineering Congress and Exposition, ASME, Chicago (2006)

    Google Scholar 

  11. Eiceman, G.A., et al.: Differential mobility spectrometry of chlorocarbons with a micro-fabricated drift tube. Analyst 129(4), 297–304 (2004)

    Article  Google Scholar 

  12. Borsdorf, H., Nazarov, E.G., Miller, R.A.: Time-of-flight ion mobility spectrometry and differential mobility spectrometry: A comparative study of their efficiency in the analysis of halogenated compounds. Talanta 71(4), 1804–1812 (2007)

    Article  Google Scholar 

  13. Krebs, M.D., et al.: Detection of biological and chemical agents using differential mobility spectrometry (DMS) technology. IEEE Sensors Journal 5(4), 696–703 (2005)

    Article  Google Scholar 

  14. Kanu, A.B., Thomas, C.L.P.: The presumptive detection of benzene in water in the presence of phenol with an active membrane-UV photo-ionisation differential mobility spectrometer. Analyst 131(9), 990–999 (2006)

    Article  Google Scholar 

  15. Schmidt, H., et al.: Microfabricated differential mobility spectrometry with pyrolysis gas chromatography for chemical characterization of bacteria. Analytical Chemistry 76(17), 5208–5217 (2004)

    Article  Google Scholar 

  16. Prasad, S., et al.: Analysis of bacterial strains with pyrolysis-gas chromatography/differential mobility spectrometry. Analyst 131(11), 1216–1225 (2006)

    Article  Google Scholar 

  17. Prasad, S., et al.: Analysis of bacteria by pyrolysis gas chromatography-differential mobility spectrometry and isolation of chemical components with a dependence on growth temperature. Analyst 132(10), 1031–1039 (2007)

    Article  Google Scholar 

  18. Prasad, S., et al.: Constituents with independence from growth temperature for bacteria using pyrolysis-gas chromatography/differential mobility spectrometry with analysis of variance and principal component analysis. Analyst 133(6), 760–767 (2008)

    Article  Google Scholar 

  19. Cheung, W., et al.: Discrimination of bacteria using pyrolysis-gas chromatography-differential mobility spectrometry (Py-GC-DMS) and chemometrics. Analyst 134(3), 557–563 (2009)

    Article  Google Scholar 

  20. Ayer, S., Zhao, W.X., Davis, C.E.: Differentiation of Proteins and Viruses Using Pyrolysis Gas Chromatography Differential Mobility Spectrometry (PY/GC/DMS) and Pattern Recognition. IEEE Sensors Journal 8(9-10), 1586–1592 (2008)

    Article  Google Scholar 

  21. Krebs, M.D., et al.: Novel technology for rapid species-specific detection of Bacillus spores. Biomolecular Engineering 23(2-3), 119–127 (2006)

    Article  Google Scholar 

  22. Davis, C.E.: Spore biomarker detection using a MEMS differential mobility spectrometer. In: IEEE Transducers Proceedings (2003)

    Google Scholar 

  23. Shnayderman, M., et al.: Species-specific bacteria identification using differential mobility spectrometry and bioinformatics pattern recognition. Analytical Chemistry 77(18), 5930–5937 (2005)

    Article  Google Scholar 

  24. Lambertus, G.R., et al.: Silicon microfabricated column with microfabricated differential mobility spectrometer for GC analysis of volatile organic compounds. Analytical Chemistry 77(23), 7563–7571 (2005)

    Article  Google Scholar 

  25. Lambertus, G.R., et al.: Rapid determination of complex mixtures by dual-column gas chromatography with a novel stationary phase combination and spectrometric detection. Journal of Chromatography A 1135(2), 230–240 (2006)

    Article  Google Scholar 

  26. Rainsberg, M.R., Harrington, P.D.B.: Thermal desorption solid-phase microextraction inlet for differential mobility spectrometry. Applied Spectroscopy 59(6), 754–762 (2005)

    Article  Google Scholar 

  27. Levin, D.S., et al.: Rapid separation and quantitative analysis of peptides using a new nanoelectrospray-differential mobility spectrometer-mass spectrometer system. Analytical Chemistry 78(15), 5443–5452 (2006)

    Article  Google Scholar 

  28. Levin, D.S., et al.: Characterization of gas-phase molecular interactions on differential mobility ion behavior utilizing an electrospray ionization-differential mobility-mass spectrometer system. Analytical Chemistry 78(1), 96–106 (2006)

    Article  Google Scholar 

  29. Levin, D.S., et al.: Using a nanoelectrospray-differential mobility spectrometer-mass spectrometer system for the analysis of oligosaccharides with solvent selected control over ESI aggregate ion formation. Journal of the American Society for Mass Spectrometry 18(3), 502–511 (2007)

    Article  Google Scholar 

  30. Shvartsburg, A.A., et al.: Ultrafast Differential Ion Mobility Spectrometry at Extreme Electric Fields Coupled to Mass Spectrometry. Analytical Chemistry 81(19), 8048–8053 (2009)

    Article  Google Scholar 

  31. Zhao, W., et al.: Two-dimensional wavelet analysis based classification of gas chromatogram differential mobility spectrometry signals. Analytica Chimica Acta 647(1), 46–53 (2009)

    Article  Google Scholar 

  32. Awan, M.A., Fleet, I., Thomas, C.L.P.: Optimising cell temperature and dispersion field strength for the screening for putrescine and cadaverine with thermal desorption-gas chromatography-differential mobility spectrometry. Analytica Chimica Acta 611(2), 226–232 (2008)

    Article  Google Scholar 

  33. Lu, Y., Harrington, P.B.: Forensic application of gas chromatography - Differential mobility spectrometry with two-way classification of ignitable liquids from fire debris. Analytical Chemistry 79(17), 6752–6759 (2007)

    Article  Google Scholar 

  34. Rearden, P., et al.: Fuzzy rule-building expert system classification of fuel using solid-phase microextraction two-way gas chromatography differential mobility spectrometric data. Analytical Chemistry 79(4), 1485–1491 (2007)

    Article  Google Scholar 

  35. Lu, Y., Chen, P., Harrington, P.B.: Comparison of differential mobility spectrometry and mass spectrometry for gas chromatographic detection of ignitable liquids from fire debris using projected difference resolution. Analytical and Bioanalytical Chemistry 394(8), 2061–2067 (2009)

    Article  Google Scholar 

  36. Molina, M.A., et al.: Design-of-experiment optimization of exhaled breath condensate analysis using a miniature differential mobility spectrometer (DMS). Analytica Chimica Acta 628(2), 155–161 (2008)

    Article  Google Scholar 

  37. Davis, C.E., et al.: Volatile and non-volatile analysis of biomarkers in human breath using differential mobility spectrometry. IEEE Sensors Journal 13(1), 1–9 (2010)

    Google Scholar 

  38. Sankaran, S., et al.: Microfabricated differential mobility spectrometers for breath analysis. In: IEEE Sensors, Atlanta, GA, pp. 16–19 (2007)

    Google Scholar 

  39. Frank, M., et al.: Modular sampling and analysis techniques for real-time analysis of human breath. In: IEEE Sensors, Atlanta, GA, pp. 10–13 (2007)

    Google Scholar 

  40. Lewis, N.S.: Comparisons between mammalian and artificial olfaction based on arrays of carbon black-polymer composite vapor detectors. Accounts of Chemical Research 37(9), 663–672 (2004)

    Article  Google Scholar 

  41. Friedrich, M.J.: Scientists Seek to Sniff Out Diseases Electronic “Noses” Someday Be Diagnostic Tools. Jama-Journal of the American Medical Association 301(6), 585–586 (2009)

    Article  Google Scholar 

  42. Fens, N., et al.: Exhaled Breath Profiling Enables Discrimination of Chronic Obstructive Pulmonary Disease and Asthma. American Journal of Respiratory and Critical Care Medicine 180(11), 1076–1082 (2009)

    Article  Google Scholar 

  43. Dragonieri, S., et al.: An electronic nose in the discrimination of patients with non-small cell lung cancer and COPD. Lung Cancer 64(2), 166–170 (2009)

    Article  Google Scholar 

  44. Thaler, E.R., Hanson, C.W.: Use of an electronic nose to diagnose bacterial sinusitis. American Journal of Rhinology 20(2), 170–172 (2006)

    Google Scholar 

  45. Thaler, E.R., et al.: Use of an electronic nose for detection of biofilms. American Journal of Rhinology 22(1), 29–33 (2008)

    Article  MathSciNet  Google Scholar 

  46. Fend, R., et al.: Prospects for clinical application of electronic-nose technology to early detection of Mycobacterium tuberculosis in culture and sputum. Journal of Clinical Microbiology 44(6), 2039–2045 (2006)

    Article  Google Scholar 

  47. Zhao, W., et al.: Machine learning: a crucial tool for developing sensors. Algorithms 1(2), 130–152 (2008)

    Article  Google Scholar 

  48. Krebs, M.D., et al.: Two-dimensional alignment of differential mobility spectrometer data. Sensors and Actuators B-Chemical 119(2), 475–482 (2006)

    Article  MathSciNet  Google Scholar 

  49. Liu, Y.H.: Wavelet feature extraction for high-dimensional microarray data. Neurocomputing 72(4-6), 985–990 (2009)

    Article  Google Scholar 

  50. Akaho, S.: Conditionally independent component analysis for supervised feature extraction. Neurocomputing 49, 139–150 (2002)

    Article  MATH  Google Scholar 

  51. Gualdron, O., et al.: Variable selection for support vector machine based multisensor systems. Sensors and Actuators B-Chemical 122(1), 259–268 (2007)

    Article  Google Scholar 

  52. Ochoa, M.L., Harrington, P.B.: Chemometric studies for the characterization and differentiation of microorganisms using in situ derivatization and thermal desorption ion mobility spectrometry. Analytical Chemistry 77(3), 854–863 (2005)

    Article  Google Scholar 

  53. Walczak, B., Wu, W.: Fuzzy warping of chromatograms. Chemometrics and Intelligent Laboratory Systems 77(1-2), 173–180 (2005)

    Google Scholar 

  54. Alsberg, B.K., et al.: Classification of pyrolysis mass spectra by fuzzy multivariate rule induction-comparison with regression, K-nearest neighbour, neural and decision-tree methods. Analytica Chimica Acta 348(1-3), 389–407 (1997)

    Article  Google Scholar 

  55. Nazarov, E.G., et al.: Pressure effects in differential mobility spectrometry. Analytical Chemistry 78(22), 7697–7706 (2006)

    Article  Google Scholar 

  56. Borsdorf, H., Nazarov, E.G., Miller, R.A.: Atmospheric-pressure ionization studies and field dependence of ion mobilities of isomeric hydrocarbons using a miniature differential mobility spectrometer. Analytica Chimica Acta 575(1), 76–88 (2006)

    Article  Google Scholar 

  57. Zhao, W., Davis, C.E.: Swarm intelligence based wavelet coefficient feature selection for mass spectral classification: an application to proteomics data. Analytica Chimica Acta 651(1), 15–23 (2009)

    Article  Google Scholar 

  58. Timmis, J., Neal, M., Hunt, J.: An artificial immune system for data analysis. Biosystems 55(1-3), 143–150 (2000)

    Article  Google Scholar 

  59. Watkins, A.B., Boggess, L.C.: A resource limited artificial immune classifier. In: Proceedings of the, Congress on Evolutionary Computation. CEC 2002, vol. 1/2, vol.xxxvi+2034, pp. 926–931 (2002) (Cat. No.02TH8600)

    Google Scholar 

  60. Zhao, W., Davis, C.E.: Autoregressive model based feature extraction method for time shifted chromatography data. Chemometrics and Intelligent Laboratory Systems 96(2), 252–257 (2009)

    Article  Google Scholar 

  61. Zhao, W., Morgan, J.T., Davis, C.E.: Gas chromatography data classification based on complex coefficients of an autoregressive model. Journal of Sensors 1(1), 1–8 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Zhao, W., Bhushan, A., Schivo, M., Kenyon, N.J., Davis, C.E. (2010). Miniature Differential Mobility Spectrometry (DMS) Advances towards Portable Autonomous Health Diagnostic Systems. In: Lay-Ekuakille, A., Mukhopadhyay, S.C. (eds) Wearable and Autonomous Biomedical Devices and Systems for Smart Environment. Lecture Notes in Electrical Engineering, vol 75. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-15687-8_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-15687-8_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-15686-1

  • Online ISBN: 978-3-642-15687-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics