Chapter

Advanced Intelligent Computing Theories and Applications

Volume 6215 of the series Lecture Notes in Computer Science pp 345-353

The Ideal Data Representation for Feature Extraction of Traditional Malay Musical Instrument Sounds Classification

  • Norhalina SenanAffiliated withFTMM, Universiti Tun Hussein Onn Malaysia
  • , Rosziati IbrahimAffiliated withFTMM, Universiti Tun Hussein Onn Malaysia
  • , Nazri Mohd NawiAffiliated withFTMM, Universiti Tun Hussein Onn Malaysia
  • , Musa Mohd MokjiAffiliated withFKE, Universiti Teknologi Malaysia
  • , Tutut HerawanAffiliated withPEND. MAT, Universitas Ahmad Dahlan

Abstract

In presenting the appropriate data sets, various data representation and feature extraction methods have been discovered previously. However, almost all the existing methods are utilized based on the Western musical instruments. In this study, the data representation and feature extraction methods are applied towards Traditional Malay musical instruments sounds classification. The impact of five factors that might affecting the classification accuracy which are the audio length, segmented frame size, starting point, data distribution and data fraction (for training and testing) are investigated. The perception-based and MFCC features schemes with total of 37 features was used. While, Multi-Layered Perceptrons classifier is employed to evaluate the modified data sets in terms of the classification performance. The results show that the highest accuracy of 97.37% was obtained from the best data sets with the combination of full features.

Keywords

data representation feature extraction Traditional Malay musical instruments Multi-Layered Perceptrons