Chapter

Distributed Computing and Artificial Intelligence

Volume 79 of the series Advances in Intelligent and Soft Computing pp 157-164

A Support Vector Regression Approach to Predict Carbon Dioxide Exchange

  • Juan F. De PazAffiliated withDepartamento Informática y Automática, Universidad de Salamanca
  • , Belén PérezAffiliated withDepartamento Informática y Automática, Universidad de Salamanca
  • , Angélica GonzálezAffiliated withDepartamento Informática y Automática, Universidad de Salamanca
  • , Emilio CorchadoAffiliated withDepartamento Informática y Automática, Universidad de Salamanca
  • , Juan M. CorchadoAffiliated withDepartamento Informática y Automática, Universidad de Salamanca

* Final gross prices may vary according to local VAT.

Get Access

Abstract

In this study, a new monitoring system for carbon dioxide exchange is presented. The mission of the intelligent environment presented in this work, is to globally monitor the interaction between the ocean’s surface and the atmosphere, facilitating the work of oceanographers. This paper proposes a hybrid intelligent system integrates case-based reasoning (CBR) and support vector regression (SVR) characterised for their efficiency for data processing and knowledge extraction. Results have demonstrated that the system accurately predicts the evolution of the carbon dioxide exchange.

Keywords

Carbon dioxide Support Vector Regression Case-based Reasoning