Fast Acceleration of Ultimately Periodic Relations

  • Marius Bozga
  • Radu Iosif
  • Filip Konečný
Conference paper

DOI: 10.1007/978-3-642-14295-6_23

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6174)
Cite this paper as:
Bozga M., Iosif R., Konečný F. (2010) Fast Acceleration of Ultimately Periodic Relations. In: Touili T., Cook B., Jackson P. (eds) Computer Aided Verification. CAV 2010. Lecture Notes in Computer Science, vol 6174. Springer, Berlin, Heidelberg

Abstract

Computing transitive closures of integer relations is the key to finding precise invariants of integer programs. In this paper, we describe an efficient algorithm for computing the transitive closures of difference bounds, octagonal and finite monoid affine relations. On the theoretical side, this framework provides a common solution to the acceleration problem, for all these three classes of relations. In practice, according to our experiments, the new method performs up to four orders of magnitude better than the previous ones, making it a promising approach for the verification of integer programs.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Marius Bozga
    • 1
  • Radu Iosif
    • 1
  • Filip Konečný
    • 1
    • 2
  1. 1.VERIMAG, CNRSGièresFrance
  2. 2.FIT BUTBrnoCzech Republic

Personalised recommendations