Fluid Structure Interaction II

Volume 73 of the series Lecture Notes in Computational Science and Engineering pp 383-411


Experimental Benchmark: Self-Excited Fluid-Structure Interaction Test Cases

  • J. Pereira GomesAffiliated withInstitute of Fluid Mechanics and Erlangen Graduate School in Advanced Optical Technologies, University of Erlangen-Nürnberg Email author 
  • , H. LienhartAffiliated withInstitute of Fluid Mechanics and Erlangen Graduate School in Advanced Optical Technologies, University of Erlangen-Nürnberg

* Final gross prices may vary according to local VAT.

Get Access


The swivelling motion of a flexible structure immersed in a flow can become self-excited as a result of different fluid-structure interaction mechanisms. The accurate simulation of these mechanisms still constitutes a challenge with respect to mathematical modelling, numerical discretization, solution techniques, and implementation as software tools on modern computer architectures. Thus, to support the development of numerical codes for fluid structure interaction computations, in the present work an experimental investigation on the two-dimensional self-excited periodic swivelling motion of flexible structures in both laminar and turbulent uniform flows was performed. The investigated structural model consisted of a stainless-steel flexible sheet attached to a cylindrical front body. At the trailing edge of the flexible sheet, a rectangular mass was considered. The entire structure model was free to rotate around an axle located in the central point of the front body. During the experimental investigation, the general character of the elastic-dynamic response of the structure model was studied first. The tests in laminar flows were performed in a polyglycol syrup (dynamic viscosity: 1.64 ×10−4 m{ 2}/s) for a Reynolds number smaller than 270, whereas the tests in turbulent flows were conducted in water for Reynolds numbers up to 44000. In both cases, the maximum incoming velocity tested was about 2 m/s. Subsequently, three specific test cases were selected and characterized in more detail as far as the flow velocity field and structure mechanical behavior are concerned. Thus, the present contribution presents the detailed results obtained at 1.07 m/s and at 1.45 m/s in laminar and at 0.68 m/s in turbulent flows. It also compares the experimental data with numerical results obtained for the same conditions using different simulating approaches. They revealed very good agreement in some of the fluid-structure interaction modes whereas in others deficiencies were observed that need to be analyzed in more detail.