Bin Packing with Fixed Number of Bins Revisited

  • Klaus Jansen
  • Stefan Kratsch
  • Dániel Marx
  • Ildikó Schlotter
Conference paper

DOI: 10.1007/978-3-642-13731-0_25

Part of the Lecture Notes in Computer Science book series (LNCS, volume 6139)
Cite this paper as:
Jansen K., Kratsch S., Marx D., Schlotter I. (2010) Bin Packing with Fixed Number of Bins Revisited. In: Kaplan H. (eds) Algorithm Theory - SWAT 2010. SWAT 2010. Lecture Notes in Computer Science, vol 6139. Springer, Berlin, Heidelberg

Abstract

As Bin Packing is NP-hard already for k = 2 bins, it is unlikely to be solvable in polynomial time even if the number of bins is a fixed constant. However, if the sizes of the items are polynomially bounded integers, then the problem can be solved in time nO(k) for an input of length n by dynamic programming. We show, by proving the W[1]-hardness of Unary Bin Packing (where the sizes are given in unary encoding), that this running time cannot be improved to f(knO(1) for any function f(k) (under standard complexity assumptions). On the other hand, we provide an algorithm for Bin Packing that obtains in time \(2^{O(k\log^2 k)}+O(n)\) a solution with additive error at most 1, i.e., either finds a packing into k + 1 bins or decides that k bins do not suffice.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2010

Authors and Affiliations

  • Klaus Jansen
    • 1
  • Stefan Kratsch
    • 2
  • Dániel Marx
    • 3
  • Ildikó Schlotter
    • 4
  1. 1.Institut für InformatikChristian-Albrechts-Universität KielKielGermany
  2. 2.Max-Planck-Institut für InformatikSaarbrückenGermany
  3. 3.Tel Aviv UniversityIsrael
  4. 4.Budapest University of Technology and EconomicsBudapestHungary

Personalised recommendations