Skip to main content
  • 1907 Accesses

Abstract

As one of the most important sensations, pain sensation has been studied extensively for a long time over a range of scales, from molecular level to the entire human neural system level. Thermal stimulation, as one of the three main stimulations for pain (thermal, mechanical and chemical stimuli), has been widely used in the pain study[1], such as the examination of tissue injury and sensitisation mechanisms, and the quantification of therapeutic effects of pharmacological, physical, and psychological interventions[2],[3]. However, the understanding of the underlying mechanisms of thermal pain is still far from clear, the main reason being that pain is influenced by many factors, including both physiological factors and psychological factors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arendt-Nielsen L, Chen A. Lasers and other thermal stimulators for activation of skin nociceptors in humans. Clinical Neurophysiology, 2003, 33(6): 259–268.

    Article  Google Scholar 

  2. Borckardt J J, Anderson B, Andrew Kozel F, et al. Acute and long-term VNS effects on pain perception in a case of treatment-resistant depression. Neurocase, 2006, 12(4): 216–220.

    Article  Google Scholar 

  3. Mao-Ying Q L, Cui K M, Liu Q, et al. Stage-dependent analgesia of electro-acupuncture in a mouse model of cutaneous cancer pain. European Journal of Pain, 2006, 10(8): 689–694.

    Article  Google Scholar 

  4. Britton N F, Skevington S M. On the mathematical modeling of pain. Neurochemical Research, 1996, 21(9): 1133–1140.

    Article  Google Scholar 

  5. Picton P D, Campbell J A, Turner S J. Modelling chronic pain: An initial survey. 8th International Conference on Neural Information Processing. Shanghai, 2001: 1267–1270.

    Google Scholar 

  6. Fors U, Ahlquist M L, Skagerwall R, et al. Relation between intradental nerve activity and estimated pain in man: A mathematical model. Pain, 1984, 18(4): 397–408.

    Article  Google Scholar 

  7. Fors U G, Ahlquist M L, Edwall L G, et al. Evaluation of a mathematical model analysing the relation between intradental nerve impulse activity and perceived pain in man. International Journal of Biomedical Computing, 1986, 19(3–4): 261–277.

    Article  Google Scholar 

  8. Fors U G, Edwall L G, Haegerstam G A. The ability of a mathematical model to evaluate the effects of two pain modulating procedures on pulpal pain in man. Pain, 1988, 33(2): 253–264.

    Article  Google Scholar 

  9. Fors U G, Sandberg H H, Edwall L G, et al. A comparison between different models of the relation between recorded intradental nerve impulse activity and reported pain in man. International Journal of Biomedical Computing, 1989, 24(1): 17–28.

    Article  Google Scholar 

  10. Britton N F, Chaplain M A, Skevington S M. The role of N-methyl-D-aspartate (NMDA) receptors in wind-up: A mathematical model. IMA Journal of Mathematics Applied in Medicine and Biology, 1996, 13(3): 193–205.

    Article  MATH  Google Scholar 

  11. Britton N F, Skevington S M. A mathematical model of the gate control theory of pain. Journal of Theoretical Biology, 1989, 137(1): 91–105.

    Article  MathSciNet  Google Scholar 

  12. Britton N F, Skevington S M, Chaplain M A J. Mathematical modeling of acute pain. Journal of Theoretical Biology, 1995, 3(4): 1119–1124.

    Google Scholar 

  13. Minamitani H, Hagita N. A neural network model of pain mechanisms computer simulation of the central neural activities essential for the pain and touch sensations. IEEE Transactions on Systems Man and Cybernetics, 1981, 11: 481–493.

    Article  Google Scholar 

  14. Haeri M, Asemani D, Gharibzadeh S. Modeling of pain using artificial neural networks. Journal of Theoretical Biology, 2003, 220(3): 277–284.

    Article  MathSciNet  Google Scholar 

  15. Tillman D B, Treede R D, Meyer R A, et al. Response of C fibre nociceptors in the anaesthetized monkey to heat stimuli: Correlation with pain threshold in humans. The Journal of Physiology, 1995, 485(3): 767–774.

    Google Scholar 

  16. Tillman D B, Treede R D, Meyer R A, et al. Response of C fibre nociceptors in the anaesthetized monkey to heat stimuli: Estimates of receptor depth and threshold. The Journal of Physiology, 1995, 485(3): 753–765.

    Google Scholar 

  17. Junger H, Moore A C, Sorkin L S. Effects of full-thickness burns on nociceptor sensitization in anesthetized rats. Burns, 2002, 28(8): 772–777.

    Article  Google Scholar 

  18. Kirkpatrick S J, Chang I, Duncan D D. Viscoelastic anisotropy in porcine skin: Acousto-optical and mechanical measurements. International Society for Optical Engineering, 2005, 34: 174–183.

    Google Scholar 

  19. Khatyr F, Imberdis C, Vescovo P, et al. Model of the viscoelastic behaviour of skin in vivo and study of anisotropy. Skin Research and Technology, 2004, 10(2): 96–103.

    Article  Google Scholar 

  20. Wu J Z, Dong R G, Smutz W P, et al. Non-linear and viscoelastic characteristics of skin under compression: Experiment and analysis. Biomedical Material Engineering, 2003, 13(4): 373–385.

    Google Scholar 

  21. Silver F H, Freeman J W, DeVore D. Viscoelastic properties of human skin and processed dermis. Skin Research and Technology, 2001, 7(1): 18–23.

    Article  Google Scholar 

  22. Moy G, Singh U, Tan E, et al. Human psychophysics for teletaction system design. The Electronic Journal of Haptics Research, 2000, 1(3): 1–20.

    Google Scholar 

  23. Wu J Z, Krajnak K, Welcome D E, et al. Analysis of the dynamic strains in a fingertip exposed to vibrations: Correlation to the mechanical stimuli on mechanoreceptors. Journal of Biomechanics, 2006, 39(13): 2445–2456.

    Article  Google Scholar 

  24. Gulati R J, Srinivasan M A. Human fingerpad under indentation I: Static and dynamic force response. ASME New York, 1995: 261–262.

    Google Scholar 

  25. Pawluk D T V. A Visocelastic Model of the Human Fingerpad and a Holistic Model of Human Touch [Ph. D. Thesis]. Cambrigde: Harvard University, 1997.

    Google Scholar 

  26. Patapoutian A, Peier A M, Story G M, et al. Thermo TRP channels and beyond: Mechanisms of temperature sensation. Nature Reviews Neuroscience, 2003, 4(8): 529–539.

    Article  Google Scholar 

  27. Cain D M, Khasabov S G, Simone D A. Response properties of mechanoreceptors and Nociceptors in mouse glabrous skin: An in vivo study. Journal of Neurophysiology, 2001, 85(4): 1561–1574.

    Google Scholar 

  28. James N C, Richard A M. Neurobiology of Nociceptors. Oxford: Oxford University Press, 1996.

    Google Scholar 

  29. Hodgkin A L, Huxley A F. A quantitative description of membrane current and its application to conduction and excitation in nerve. The Journal of Physiology, 1952, 117(4): 500–544.

    Google Scholar 

  30. Pawluk D, Howe R. A holistic model of human touch. 5th Annual CNS Meeting. Saskatoon, 1996.

    Google Scholar 

  31. Nemoto I, Miyazaki S, Saito M, et al. Behavior of solutions of the hodgkinhuxley equations and its relation to properties of mechanoreceptors. Biophysicial Journal, 1975, 15(5): 469–479.

    Article  Google Scholar 

  32. Miftakhov R N, Wingate D L. Electrical activity of the sensory afferent pathway in the enteric nervous system. Biological Cybernetics, 1996, 75(6): 471–483.

    Article  MATH  Google Scholar 

  33. Takeuchi E, Yamanobe T, Pakdaman K, et al. Analysis of models for crustacean stretch receptors. Biological Cybernetics, 2001, 84(5): 349–363.

    Article  Google Scholar 

  34. Torkkeli P H, French A S. Simulation of different firing patterns in paired spider mechanoreceptor neurons: The role of Na(+) channel inactivation. Journal of Neurophysiology, 2002, 87(3): 1363–1368.

    Google Scholar 

  35. Lv Y G, Liu J. Interpretation on thermal comfort mechanisms of human bodies by combining Hodgkin-Huxley neuron model and Pennes bioheat equation. Forschung im Ingenieurwesen, 2005, 69(2): 101–114.

    Article  Google Scholar 

  36. Braun H A, Huber M T, Anthes N, et al. Noise-induced impulse pattern modifications at different dynamical period-one situations in a computer model of temperature encoding. Biosystems, 2001, 62(1–3): 99–112.

    Article  Google Scholar 

  37. Frankenhaeuser B, Huxley A F. The action potential in the myelinated nerve fiber of xenopus laevis as computed on the basis of voltage clamp data. The Journal of Physiology, 1964, 171(2): 302–315.

    Google Scholar 

  38. Noble D. Applications of Hodgkin-Huxley equations to excitable tissues. Physiological Reviews, 1966, 46(1): 1–50.

    Google Scholar 

  39. Adrian R H, Chandler W K, Hodgkin A L. Voltage clamp experiments in striated muscle fibres. The Journal of Physiology, 1970, 208(3): 607–644.

    Google Scholar 

  40. Wechselberger M, Wright C L, Bishop G A, et al. Ionic channels and conductance-based models for hypothalamic neuronal thermosensitivity. American Journal of Physiology: Regulatory, Integrative and Comparative Physiology, 2006, 291(3): R518–R529.

    Article  Google Scholar 

  41. Cesare P, Moriondo A, Vellani V, et al. Ion channels gated by heat. Proceedings of the National Academy of Sciences, 1999, 96(14): 7658–7663.

    Article  Google Scholar 

  42. Dormand J R, Prince P J. A family of embedded Runge-Kutta formulae. Journal of Computational and Applied Mathematics, 1980, 6: 19–26.

    Article  MathSciNet  MATH  Google Scholar 

  43. Hille B. Ionic Channels of Excitable Membranes. Sunderland: Sinauer Associates, 1992.

    Google Scholar 

  44. Adriaensen H, Gybels J, Handwerker H O, et al. Suppression of C-fibre discharges upon repeated heat stimulation may explain characteristics of concomitant pain sensations. Brain Research, 1984, 302(2): 203–211.

    Article  Google Scholar 

  45. Meyer R A, Campbell J N. Myelinated nociceptive afferents account for the hyperalgesia that follows a burn to the hand. Science, 1981, 213(4515): 1527–1529.

    Article  Google Scholar 

  46. LaMotte R H, Campbell J N. Comparison of responses of warm and nociceptive C-fiber afferents in monkey with human judgments of thermal pain. Journal of Neurophysiology, 1978, 41(2): 509–528.

    Google Scholar 

  47. Treede R D, Meyer R A, Campbell J N. Myelinated mechanically insensitive afferents from monkey hairy skin: Heat-response properties. Journal of Neurophysiology, 1998, 80(3): 1082–1093.

    Google Scholar 

  48. Fuortes M G, Mantegazzini F. Interpretation of the repetitive firing of nerve cells. The Journal of General Physiology, 1962, 45(6): 1163–1179.

    Article  Google Scholar 

  49. Jack J J B, Noble D, Tsien R W. Electric Current Flow in Excitable Cells. London: Oxford University Press, 1975: 305–378.

    Google Scholar 

  50. Dodge F A. On the transduction of visual, mechanical, and chemical stimuli. International Journal of Neuroscience, 1972, 3(1): 5–14.

    Article  Google Scholar 

  51. Shapiro B I, Lenherr F K. Hodgkin-Huxley axon. Increased modulation and linearity of response to constant current stimulus. Biophysical Journal, 1972, 12(9): 1145–1158.

    Article  Google Scholar 

  52. Radmilovich M, Fernández A, Trujillo-Cenóz O. Environment temperature affects cell proliferation in the spinal cord and brain of juvenile turtles. The Journal of Experimental Biology, 2003, 206(17): 3085–3093.

    Article  Google Scholar 

  53. Xu H, Robertson R M. Effects of temperature on properties of flight neurons in the locust. Journal of Comparative and Physiological Psychology, 1994, 175: 193–202.

    Google Scholar 

  54. Chandler W K, Meves H. Rate constants associated with changes in sodium conductance in axons perfused with sodium fluoride. Journal of Physiology, 1970, 211(3): 679–705.

    Google Scholar 

  55. Joyner R W. Temperature effects on neuronal elements. Fed Proc, 1981, 40(14): 2814–2818.

    Google Scholar 

  56. Sjodin R A, Mullins L J. Oscillatory behavior of the squid axon membrane potential. The Journal of General Physiology, 1958, 42(1): 39–47.

    Article  Google Scholar 

  57. Guttman R. Effect of temperature on the potential and current thresholds of axon membrane. The Journal of General Physiology, 1962, 46(2): 257–266.

    Article  Google Scholar 

  58. Guttman R. Temperature characteristics of excitation in space-clamped squid axons. The Journal of General Physiology, 1966, 49(5): 1007–1018.

    Article  Google Scholar 

  59. Fitzhugh R. Theoretical effect of temperature on threshold in the Hodgkin-Huxley nerve model. The Journal of General Physiology, 1966, 49(5): 989–1005.

    Article  Google Scholar 

  60. Moore J W. Temperature and drug effects on squid axon membrane ion conductances. Fed Proc, 1958, 17: 113.

    Google Scholar 

  61. Cao X J, Oertel D. Temperature affects voltage-sensitive conductances differentially in octopus cells of the mammalian cochlear nucleus. Journal of Neurophysiology, 2005, 94(1): 821–832.

    Article  Google Scholar 

  62. Bezanilla F, Taylor R E. Temperature effects on gating currents in the squid giant axon. Biophysical Journal, 1978, 23(3): 479–484.

    Article  Google Scholar 

  63. Zhao Y, Boulant J A. Temperature effects on neuronal membrane potentials and inward currents in rat hypothalamic tissue slices. The Journal of Physiology, 2005, 564(7): 245–257.

    Article  Google Scholar 

  64. Rosenthal J J, Bezanilla F. A comparison of propagated action potentials from tropical and temperate squid axons: Different durations and conduction velocities correlate with ionic conductance levels. The Journal of Experimental Biology, 2002, 205(12): 1819–1830.

    Google Scholar 

  65. Volgushev M, Vidyasagar T R, Chistiakova M, et al. Membrane properties and spike generation in rat visual cortical cells during reversible cooling. The Journal of Physiology (London), 2000, 522(1): 59–76.

    Article  Google Scholar 

  66. Hodgkin A L, Katz B. The effect of temperature on the electrical activity of the giant axon of the squid. The Journal of Physiology, 1949, 109: 240–249.

    Google Scholar 

  67. Cocherová E. The Temperature Relationship in the Modified Hodgkin-Huxley Model of the Nerve Fibre. 12th International Scientific Conference Radioelektronika. Bratislava, 2002: 132–135.

    Google Scholar 

  68. Hodgkin A L, Huxley A F, Katz B. Measurement of current-voltage relations in the membrane of the giant axon of Loligo. The Journal of Physiology, 1952, 116(4): 424–448.

    Google Scholar 

  69. Hodgkin A L. The Conduction of the Nervous Impulses. Livepool: Liverpool University Press, 1964.

    Google Scholar 

  70. Rattay F. Electrical Nerve Stimulation. Wien: Springer-Verlag, 1990.

    Google Scholar 

  71. Bremer F, Titeca J. Etude Oscillographique De La Paralysie Thermique Du Nerf. Archives Internationales De Physiologie Et De Biochimie, 1946, 54(3): 237–272.

    Article  Google Scholar 

  72. Huxley A F. Ion movements during nerve activity. The New York Academy of Sciences, 1959, 81: 221–246.

    Article  Google Scholar 

  73. Llinás R, Mühlethaler M. Electrophysiology of guinea-pig cerebellar nuclear cells in the in vitro brain stem-cerebellar preparation. The Journal of Physiology, 1988, 404: 241–258.

    Google Scholar 

  74. Koch C. Biophysics of Computation. New York: Oxford University Press, 1999.

    Google Scholar 

  75. Connor J A, Walkter D, McKown R. Neural repetitive firing modifications of the hodgkin-huxley axon suggested by experimental results from crustacean axons. Biophysical Journal, 1977, 18(1): 81–102.

    Article  Google Scholar 

  76. Rush M E, Rinzel J. The potassium a-current, low firing rates and rebound excitation in hodgkin-huxley models. Bulletin of Mathematical Biology, 1995, 57(6): 899–929.

    MATH  Google Scholar 

  77. Connor J A, Stevens C F. Voltage clamp studies of a transient outward membrane current in gastropod neural somata. The Journal of Physiology (London), 1971, 213(1): 21–30.

    Google Scholar 

  78. Kanold P O, Manis P B. A physiologically based model of discharge pattern regulation by transient K+ currents in cochlear nucleus pyramidal cells. Journal of Neurophysiology, 2001, 85(2): 523–538.

    Google Scholar 

  79. Hewitt M J, Meddis R. A computer model of dorsal cochlear nucleus pyramidal cells: Intrinsic membrane properties. Journal of the Acoustical Society of America, 1995, 97(4): 2405–2413.

    Article  Google Scholar 

  80. Kernell D, Sjoholm H. Repetitive impulse firing: Comparisons between neurone models based on “voltage clamp equations” and spinal motoneurones. Acta Physiol Scand, 1973, 87(1): 40–56.

    Article  Google Scholar 

  81. Rothman J S, Manis P B. The roles potassium currents play in regulating the electrical activity of ventral cochlear nucleus neurons. Journal of Neurophysiology, 2003, 89(6): 3097–3113.

    Article  Google Scholar 

  82. Hagiwara S, Kusano K, Saito N. Membrane changes in Onchidium nerve cell in potassium rich media. The Journal of Physiology (London), 1961, 155(3): 470–489.

    Google Scholar 

  83. Rudy B. Diversity and ubiquity of K channels. Neuroscience, 1988, 25(3): 729–749.

    Article  Google Scholar 

  84. Sheng M, Liao Y J, Jan Y N, et al. Presynaptic A-current based on heteromultimeric K+ channels detected in vivo. Nature, 1993, 365(6441): 72–75.

    Article  Google Scholar 

  85. Connor J A, Stevens C F. Prediction of repetitive firing behaviour from voltage clamp data on an isolated neurone soma. The Journal of Physiology, 1971, 213(1): 31–53.

    Google Scholar 

  86. De Medinaceli L, Hurpeau J, Merle M, et al. Cold and post-traumatic pain: Modeling of the peripheral nerve message. Biosystems, 1997, 43(3): 145–167.

    Article  Google Scholar 

  87. Julius D, Basbaum A I. Molecular mechanisms of nociception. Nature, 2001, 413(6852): 203–210.

    Article  Google Scholar 

  88. Paintal A S. Effects of temperature on conduction in single vagal and saphenous myelinated nerve fibres of the cat. The Journal of Physiology (London), 1965, 180(1): 20–49.

    Google Scholar 

  89. Paintal A S. The influence of diameter of medullated fibres of cats on the rising and falling phases of the spike and its recovery. The Journal of Physiology (London), 1966, 184(4): 791–811.

    Google Scholar 

  90. Melzack R, Wall P D. Pain mechanisms: A new theory. Science, 1965, 150(699): 971–979.

    Article  Google Scholar 

  91. Guyton A C, Hall J E. Textbook of Medical Physiology. 10th Edition. Philadelphia: WB Saunders, 2000.

    Google Scholar 

  92. Mendell L M. Physiological properties of unmyelinated fiber projection to the spinal cord. Experimental Neurology, 1966, 16(3): 316–332.

    Article  Google Scholar 

  93. Humphries S A, Johnson M H, Long N R. An investigation of the gate control theory of pain using the experimental pain stimulus of potassium iontophoresis. Percept Psychophys, 1996, 58(5): 693–703.

    Article  Google Scholar 

  94. Torebjork H E, LaMotte R H, Robinson C J. Peripheral neural correlates of magnitude of cutaneous pain and hyperalgesia: Simultaneous recordings in humans of sensory judgments of pain and evoked responses in nociceptors with C-fibers. Journal of Neurophysiology, 1984, 51(2): 325–339.

    Google Scholar 

  95. Campbell J N, LaMotte R H. Latency to detection of first pain. Brain Research, 1983, 266(2): 203–208.

    Article  Google Scholar 

  96. Iggo A. Cutaneous heat and cold receptors with slowly conducting (C) afferent fibres. Quarterly Journal of Experimental Physiology, 1959, 44(4): 362–370.

    Google Scholar 

  97. Georgopoulos A P. Functional properties of primary afferent units probably related to pain mechanisms in primate glabrous skin. Journal of Neurophysiology, 1976, 39(1): 71–83.

    Google Scholar 

  98. Georgopoulos A P. Stimulus-response relations in high-threshold mechanothermal fibers innervating primate glabrous skin. Brain Research, 1977, 128(3): 547–552.

    Article  Google Scholar 

  99. Chery-Croze S. Painful sensation induced by a thermal cutaneous stimulus. Pain, 1983, 17(2): 109–137.

    Article  Google Scholar 

  100. Chery-Croze S. Relationship between noxious cold stimuli and the magnitude of pain sensation in man. Pain, 1983, 15(3): 265–269.

    Article  Google Scholar 

  101. Simone D A, Kajander K C. Responses of cutaneous A-fiber nociceptors to noxious cold. Journal of Neurophysiology, 1997, 77(4): 2049–2060.

    Google Scholar 

  102. Liu J, Chen X, Xu L X. New thermal wave aspects on burn evaluation of skin subjected to instantaneous heating. IEEE Transactions on Biomedical Engineering, 1999, 46(4): 420–428.

    Article  Google Scholar 

  103. Plaghki L, Mouraux A. How do we selectively activate skin nociceptors with a high power infrared laser? Physiology and biophysics of laser stimulation. Clinical Neurophysiology, 2003, 33(6): 269–277.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Science Press Beijing and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Xu, F., Lu, T. (2011). Skin Thermal Pain Modeling. In: Introduction to Skin Biothermomechanics and Thermal Pain. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-13202-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-13202-5_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-13201-8

  • Online ISBN: 978-3-642-13202-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics