CCA Proxy Re-Encryption without Bilinear Maps in the Standard Model


Proxy re-encryption (PRE) is a cryptographic application proposed by Blaze, Bleumer, and Strauss. It is an encryption system with a special property in which the semi-honest third party, the proxy, can re-encrypt ciphertexts for Alice into other ciphertexts for Bob without using Alice’s secret key. We can classify PRE into bidirectional and unidirectional schemes. Canetti and Hohenberger formalized the semantic security under chosen ciphertext attack for PRE, the PRE-CCA security. Several schemes satisfy the PRE-CCA security as a bidirectional or unidirectional scheme. However, some PRE schemes need a bilinear map in the standard model, and the other PRE schemes are PRE-CCA secure in the random oracle model before our work. In this paper, we construct a bidirectional PRE-CCA proxy re-encryption without bilinear maps in the standard model. We study lossy trapdoor functions (LTDFs) based on the decisional Diffie-Hellman (DDH) assumption proposed by Peikert and Waters. We define a new variant of LTDFs, re-applicable LTDFs, which are specialized LTDFs for PRE, and use them for our scheme.