Theory of Cryptography Conference

TCC 2010: Theory of Cryptography pp 572-587

Composition of Zero-Knowledge Proofs with Efficient Provers

  • Eleanor Birrell
  • Salil Vadhan
Conference paper

DOI: 10.1007/978-3-642-11799-2_34

Volume 5978 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Birrell E., Vadhan S. (2010) Composition of Zero-Knowledge Proofs with Efficient Provers. In: Micciancio D. (eds) Theory of Cryptography. TCC 2010. Lecture Notes in Computer Science, vol 5978. Springer, Berlin, Heidelberg

Abstract

We revisit the composability of different forms of zero- knowledge proofs when the honest prover strategy is restricted to be polynomial time (given an appropriate auxiliary input). Our results are:

  1. 1

    When restricted to efficient provers, the original Goldwasser–Micali–Rackoff (GMR) definition of zero knowledge (STOC ‘85), here called plain zero knowledge, is closed under a constant number of sequential compositions (on the same input). This contrasts with the case of unbounded provers, where Goldreich and Krawczyk (ICALP ‘90, SICOMP ‘96) exhibited a protocol that is zero knowledge under the GMR definition, but for which the sequential composition of 2 copies is not zero knowledge.

     
  2. 1

    If we relax the GMR definition to only require that the simulation is indistinguishable from the verifier’s view by uniform polynomial-time distinguishers, with no auxiliary input beyond the statement being proven, then again zero knowledge is not closed under sequential composition of 2 copies.

     
  3. 1

    We show that auxiliary-input zero knowledge with efficient provers is not closed under parallel composition of 2 copies under the assumption that there is a secure key agreement protocol (in which it is easy to recognize valid transcripts). Feige and Shamir (STOC ‘90) gave similar results under the seemingly incomparable assumptions that (a) the discrete logarithm problem is hard, or (b) \({\mathcal{UP}}\not\subseteq {\mathcal{BPP}}\) and one-way functions exist.

     
Download to read the full conference paper text

Copyright information

© IFIP International Federation for Information Processing 2010

Authors and Affiliations

  • Eleanor Birrell
    • 1
  • Salil Vadhan
    • 2
  1. 1.Department of Computer ScienceCornell UniversityUSA
  2. 2.School of Engineering and Applied Sciences and Center for Research on Computation and SocietyHarvard UniversityUSA