Date: 08 Feb 2011

A Perspective on the Role of the Dynamical Core in the Development of Weather and Climate Models

* Final gross prices may vary according to local VAT.

Get Access

Abstract

This chapter aims to place the dynamical core of weather and climate models into the context of the model as a system of components. Building from basic definitions that describe models and their applications, the chapter details the component structure of a present-day atmospheric model. This facilitates the categorization of model components into types and the basic description of the dynamical core. An important point in this categorization is that the separation between ‘dynamics’ and ‘physics’ is not always clear; there is overlap. This overlap becomes more important as the spatial resolution of models increases, with resolved scales and parameterized processes becoming more conflated. From this categorization an oversimple, intuitive list of the parts of a dynamical core is made. Following this, the equations of motion are analyzed, and the design-based evolution of the dynamical core described in Lin (2004, Monthly Weather Review) is discussed. This leads to a more complete description of the dynamical core, which explicitly includes the specification of topography and grids on which the equations of motion are solved. Finally, a set of important problems for future consideration is provided. This set emphasizes the modeling system as a whole and the need to focus on physical consistency, on the scientific investigation of coupling, on the representation of physical and numerical dissipation (sub-scale mixing and filtering), and on the robust representation of divergent flows. This system-based approach of model building stands in contrast to a component-based approach and influences the details of component algorithms.