Skip to main content

Fungal Biotransformations in Pharmaceutical Sciences

  • Chapter
  • First Online:
Book cover Industrial Applications

Part of the book series: The Mycota ((MYCOTA,volume 10))

Abstract

The regio- and stereoselective conversion of complex substrates represents one of the major advantage of microbial biotransformation. This chapter covers the biocatalytic capacities of fungi to derivatize bioactive small molecules, both from natural sources and from synthetic compounds. We focus particularly on sterol and taxane biotransformation. We also present examples at the interface of biotransformation and pathway engineering using recombinant organisms, with an emphasis on the production of lovastatin derivatives. Finally, we highlight selected studies on fungal xenometabolism which serves as a model to study the breakdown of drugs in mammals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abel AM, Carnell, AJ, Davis JA, Paylor M (2003) The synthesis of buprenorphine intermediates by regioselective microbial N- and O-demethylation reactions using Cunninghamella echinulata NRRL 1384. Enzyme Microb Technol 33:743–748

    Article  CAS  Google Scholar 

  • Aleu J, Collado IG (2001) Biotransformations by Botrytis species. J Mol Cat B Enzym 13:77–93

    Article  CAS  Google Scholar 

  • Arantes SF, Hanson JR (2007) The biotransformation of sesquiterpenoids by Mucor plumbeus. Curr Org Chem 11:657–663

    Article  CAS  Google Scholar 

  • Archelas A, Furstoss R (1999) Biocatalytic approaches for the synthesis of enantiopure epoxides. In: Fessner WD (ed) Biocatalysis – from discovery to application. Topics in Current Chemistry, Vol. 200. Springer, Berlin Heidelberg New York, pp 159–191

    Chapter  Google Scholar 

  • Asha S, Vidyavathi M (2009) Cunninghamella – a microbial model for drug metabolism studies – a review. Biotechnol Adv 27:16–29

    Article  CAS  Google Scholar 

  • Auclair K, Kennedy J, Hutchinson CR, Vederas JC (2001) Conversion of cyclic nonaketides to lovastatin and compactin by a lovC deficient mutant of Aspergillus terreus. Bioorg Med Chem Lett. 11:1527–1531

    Article  CAS  Google Scholar 

  • Ballio A, Chain EB, Dentice Di Accadia F, Mastropietro-Cancellieri MF, Morpurgo G, Serlupi-Crescenzi G, Sermonti G (1960) Incorporation of α, ω-dicarboxylic acids as side-chains into the penicillin molecule. Nature 185:197–199

    Article  Google Scholar 

  • Basch J, Franceschini T, Tonzi S, Chiang SJ (2004) Expression of a cephalosporin C esterase gene in Acremonium chrysogenum for the direct production of deacetylcephalosporin C. J Ind Microbiol Biotechnol 31:531–539

    Article  CAS  Google Scholar 

  • Brannon DR, Martin J, Oehlschlager AC, Durham NN, Zalkow LH (1965) Transformation of progesterone and related steroids by Aspergillus tamarii. J Org Chem 30:760–762

    Article  CAS  Google Scholar 

  • BRENDA (2009) All enzymes in BRENDA™. Technical University of Braunschweig. http://www.brenda-enzymes.org/index.php4?page=information/all_enzymes.php4?ecno=. Accessed 15 September 2009

  • Cannell RJ, Dawson MJ, Hale RS, Hall RM, Noble D, Lynn S, Taylor NL (1993) The squalestatins, novel inhibitors of squalene synthase produced by a species of Phoma. IV. Preparation of fluorinated squalestatins by directed biosynthesis. J Antibiot 46:1381–1389

    Article  CAS  Google Scholar 

  • Chartrain M, Sturr, M (2005) Fungal bioconversions: applications to the manufacture of pharmaceuticals. In: An Z (ed) Handbook of industrial mycology. Dekker, New York, pp 563–595

    Google Scholar 

  • Chartrain M, Lynch J, Choi WB, Churchill H, Patel S, Yamazaki S, Volante R, Greasham R (2000) Asymmetric bioreduction of a bisaryl ketone to its corresponding (S)-bisaryl alcohol, by the yeast Rhodotorula pilimanae ATCC 32762. J Mol Catal B Enzym 8:285–288

    Article  CAS  Google Scholar 

  • Chen Y, Rosazza JPN, Reese CP, Chang HY, Nowakowski MA, Kiplinger JP (1997) Microbial models of soil metabolism: biotransformations of danofloxacin. J Ind Microbiol Biotechnol 19:378–384

    Article  Google Scholar 

  • Elander RP (2003) Industrial production of beta-lactam antibiotics. Appl Microbiol Biotechnol 61:385–392

    CAS  Google Scholar 

  • Faber K (2004) Biotransformations in organic chemistry. Springer, Berlin Heidelberg New York

    Book  Google Scholar 

  • Gamenara D, Dominguez de Maria P (2009) Candida spp. redox machineries: An ample biocatalytic platform for practical applications and academic insights. Biotechnol Adv 27:278–285

    Article  CAS  Google Scholar 

  • Gartz J (1989) Biotransformation of tryptamine derivatives in mycelial cultures of Psilocybe. J Basic Microbiol 29:347–352

    Article  CAS  Google Scholar 

  • Geerlings A, Redondo FJ, Contin A, Memelink J, van der Heijden R, Verpoorte R (2001) Biotransformation of tryptamine and secologanin into plant terpenoid indole alkaloids by transgenic yeast. Appl Microbiol Biotechnol 56:420–424

    Article  CAS  Google Scholar 

  • Gibson M, Soper CJ, Parfitt RT, Sewell GJ (1984) Studies on the mechanism of microbial N-demethylation of codeine by cell-free extracts of Cunninghamella bainieri. Enzyme Microb Technol 6:471–475

    Article  CAS  Google Scholar 

  • Gong PF, Wu HY, Xu JH, Shen D, Liu YY (2002) Biocatalytic preparation of enantiopure (R)-ketoprofen from its racemic ester by a new yeast isolate Citeromyces matriensis CGMCC 0573. Appl Microbiol Biotechnol 58:728–734

    Article  CAS  Google Scholar 

  • Hanson JR, Royal Society of Chemistry (2008) The chemistry of fungi. Royal Society of Chemistry, Cambridge

    Google Scholar 

  • Hofmeister H, Annen K, Petzold K, Wiechert R (1986) Synthese von Gestoden. Arzneimittelforschung 36:761–783

    Google Scholar 

  • Holland HL (1999) Recent advances in applied and mechanistic aspects of the enzymatic hydroxylation of steroids by whole-cell biocatalysis. Steroids 64:178–186

    Article  CAS  Google Scholar 

  • Holland HL, Weber HK (2000) Enzymatic hydroxylation reactions. Curr Opin Biotechnol 11:547–553

    Article  CAS  Google Scholar 

  • Hu S, Tian, X, Zhu W, Fang Q (1996) Biotransformation of 2α,5α,10β,14β-tetraacetoxy-4(20),11-taxadiene by the fungi Cunninghamella elegans and Cunninghamella echinulata. J Nat Prod 59:1006–1009

    Article  CAS  Google Scholar 

  • Hu S, Sun D, Tian, X, Fang Q (1997) Selective microbial hydroxylation and biological rearrangement of taxoids. Tetrahedron Lett 38:2721–2724

    Article  CAS  Google Scholar 

  • Hunter AC, Coyle E, Morse F, Dedi C, Dodd HT, Koussoroplis SJ (2009) Transformation of 5-ene steroids by the fungus Aspergillus tamarii KITA: mixed molecular fate in lactonization and hydroxylation pathways with identification of a putative 3β-hydroxy-steroid dehydrogenase/Δ54 isomerase pathway. Biochim Biophys Acta 1791:110–117

    Article  CAS  Google Scholar 

  • Ishida T (2005) Biotransformation of terpenoids by mammals, microorganisms, and plant-cultured cells. Chem Biodivers 2:569–590

    Article  CAS  Google Scholar 

  • Karl W, Schneider J, Wetzstein HG (2006) Outlines of an "exploding" network of metabolites generated from the fluoroquinolone enrofloxacin by the brown rot fungus Gibeophyllum striatum. Appl Microbiol Biotechnol 71:101–113

    Article  CAS  Google Scholar 

  • Kennedy J, Auclair K, Kendrew SG, Park C, Vederas JC, Hutchinson CR (1999) Modulation of polyketide synthase activity by accessory proteins during lovastatin biosynthesis. Science 284:1368–1372

    Article  CAS  Google Scholar 

  • Kimura K, Komagata D, Murakawa S, Endo A (1990) Biosynthesis of monacolins: conversion of monacolin J to monacolin K (mevinolin). J Antibiot 43:1621–1622

    Article  CAS  Google Scholar 

  • Lamm AS, Chen AR, Reynolds WF, Reese PB (2007) Steroid hydroxylation by Whetzelinia sclerotiorum, Phanerochaete chrysosporium and Mucor plumbeus. Steroids 72:713–722

    Article  CAS  Google Scholar 

  • Liu HM, Li H, Shan L, Wu J (2006) Synthesis of steroidal lactone by Penicillium citreo-viride. Steroids 71:931–934

    Article  CAS  Google Scholar 

  • Madyastha KM, Reddy GV (1994) Mucor piriformis, an efficient N-dealkylating reagent for thebaine and its N-variants. J Chem Soc Perkin Trans I 911–912

    Article  Google Scholar 

  • Manzoni M, Rollini M (2002) Biosynthesis and biotechnological production of statins by filamentous fungi and application of these cholesterol-lowering drugs. Appl Microbiol Biotechnol 58:555–564

    Article  CAS  Google Scholar 

  • Marengo JR, Kok RA, Burrows LA, Velagaleti RR, Stamm JM (2001) Biodegradation of C-14-sarafloxacin hydrochloride, a fluoroquinolone antimicrobial by Phanerochaete chrysosporium. J Sci Indust Res 60:121–130

    CAS  Google Scholar 

  • Martens R, Wetzstein HG, Zadrazil F, Capelari M, Hoffmann P, Schmeer N (1996) Degradation of the fluoroquinolone enrofloxacin by wood-rotting fungi. Appl Environ Microbiol 62:4206-4209

    CAS  Google Scholar 

  • McNaught AD, Wilkinson A, International Union of Pure and Applied Chemistry (1997) Compendium of chemical terminology: IUPAC recommendations. Blackwell Science, Oxford

    Google Scholar 

  • Middleton RF, Foster G, Cannell RJ, Sidebottom PJ, Taylor NL, Noble D, Todd M, Dawson MJ, Lawrence GC (1995) Novel squalestatins produced by biotransformation. J Antibiot 48:311–316

    Article  CAS  Google Scholar 

  • Müller M (2005) Chemoenzymatic synthesis of building blocks for statin side chains. Angew Chem Int Ed 44:362–365

    Article  Google Scholar 

  • Nakamura T, Komagata D, Murakawa S, Sakai K, Endo A (1990) Isolation and biosynthesis of 3 alpha-hydroxy-3,5-dihydromonacolin L. J Antibiot 43:1597–1600

    Article  CAS  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (1999) Regioselective transformation of ciprofloxacin to N-acetylciprofloxacin by the fungus Mucor ramannianus. FEMS Microbiol Lett 177:131–135

    Article  CAS  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Beger RD, Williams AJ, Sutherland JB (2000) Microbiological transformation of enrofloxacin by the fungus Mucor ramannianus. Appl Environ Microbiol 66:2664–2667

    Article  CAS  Google Scholar 

  • Parshikov IA, Freeman JP, Lay JO, Moody JD, Williams AJ, Beger RD, Sutherland JB (2001a) Metabolism of the veterinary fluoroquinolone sarafloxacin by the fungus Mucor ramannianus. J Ind Microbiol Biotechnol 26:140–144

    Article  CAS  Google Scholar 

  • Parshikov IA, Heinze TM, Moody JD, Freeman JP, Williams AJ, Sutherland JB (2001b) The fungus Pestalotiopsis guepini as a model for biotransformation of ciprofloxacin and norfloxacin. Appl Microbiol Biotechnol 56:474–477

    Article  CAS  Google Scholar 

  • Parshikov IA, Heinze TM, Williams AJ, Moody JD, Freeman JP, Sutherland JB (2002) Biotransformation of the antibacterial agent cinoxacin by the fungus Beauveria bassiana. Abstr Gen Meet Am Soc Microbiol 102:391–392

    Google Scholar 

  • Pekala E, Kochan M, Carnell AJ (2009) Microbial transformation of hydroxy metabolites of 1-oxohexyl derivatives of theobromine by Cunninghamella echinulata NRRL 1384. Lett Appl Microbiol 48:19–24

    Article  CAS  Google Scholar 

  • Peterson D, Murray H, Eppstein S, Reineke L, Weintraub A, Meister P, Leigh H (1952a) Microbiological transformations of steroids. I. Introduction of an oxygen at carbon-11 of progesterone. J Am Chem Soc 74:5933–5936

    Article  CAS  Google Scholar 

  • Peterson DH, Eppstein SH, Meister PD, Murray HC, Leigh HM, Weintraub A, Reineke LM (1952b) Microbiological transformations of steroids. IX. Degradation of C21 steroids to C19 ketones and to testololactone. J Am Chem Soc 75:5768–5769

    Article  Google Scholar 

  • Ravia SP, Carrera I, Seoane GA, Vero S, Gamenara D (2009) Novel fungi-catalyzed reduction of alpha-alkyl-beta-keto esters. Tetrahedron-Asymmetry 20:1393–1397

    Article  CAS  Google Scholar 

  • Schoemaker HE, Mink D, Wubbolts MG (2003) Dispelling the myths – biocatalysis in industrial synthesis. Science 299:1694–1697

    Article  CAS  Google Scholar 

  • Simeo Y, Sinisterra JV (2009) Biotransformation of terpenoids: a green alternative for producing molecules with pharmacological activity. Mini Rev Org Chem 6:128–134

    Article  CAS  Google Scholar 

  • Sorensen JL, Vederas JC (2003) Monacolin N, a compound resulting from derailment of type I iterative polyketide synthase function en route to lovastatin. Chem Commun 1492–1493

    Google Scholar 

  • Spizzo P, Basso A, Ebert C, Gardossi L, Ferrario V, Romano D, Molinari F (2007) Resolution of (R,S)-flurbiprofen catalysed by dry mycelia in organic solvent. Tetrahedron 63:11005–11010

    Article  CAS  Google Scholar 

  • Stewart JD (2006) Genomes as resources for biocatalysis. Adv Appl Microbiol 59:21–52

    Google Scholar 

  • Sun DA, Nikolakakis A, Sauriol F, Mamer O, Zamir LO (2001) Microbial and reducing agents catalyze the rearrangement of taxanes. Bioorg Med Chem 9:1985–1992

    Article  CAS  Google Scholar 

  • Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S, Groisillier A, Testet E, Costaglioli P, Cauet G, Degryse E, Balbuena D, Winter J, Achstetter T, Spagnoli R, Pompon D, Dumas B (2003) Total biosynthesis of hydrocortisone from a simple carbon source in yeast. Nat Biotechnol 21:143–149

    Article  CAS  Google Scholar 

  • Ullán RV, Campoy S, Casqueiro J, Fernāndez FJ, Martín JF (2007) Deacetylcephalosporin C production in Penicillium chrysogenum by expression of the isopenicillin N epimerization, ring expansion, and acetylation genes. Chem Biol 14:329–339

    Article  Google Scholar 

  • Webb EC (ed) (1992) Enzyme nomenclature 1992: recommendations of the NC-IUBMB on the nomenclature and classification of enzymes, vol. 1. Academic, San Diego

    Google Scholar 

  • Wetzstein HG, Schneider J, Karl W (2006) Patterns of metabolites produced from the fluoroquinolone enrofloxacin by basidiomycetes indigenous to agricultural sites. Appl Microbiol Biotechnol 71:90–100

    Article  CAS  Google Scholar 

  • Wigley LJ, Mantle PG, Perry DA (2006) Natural and directed biosynthesis of communesin alkaloids. Phytochemistry 67:561–569

    Article  CAS  Google Scholar 

  • Wolberg M, Hummel W, Müller M (2001) Biocatalytic reduction of β,δ-diketo esters: A highly stereoselective approach to all four stereoisomers of a chlorinated β,δ-dihydroxy hexanoate. Chem Eur J 7:4562–4571

    Article  CAS  Google Scholar 

  • Wolberg M, Kaluzna IA, Müller M, Stewart JD (2004) Regio- and enantioselective reduction of t-butyl-6-chloro-3,5-dioxohexanoate with baker’s yeast. Tetrahedron Asym 15:2825–2828

    Article  CAS  Google Scholar 

  • Xie X, Tang Y (2007) Efficient synthesis of simvastatin by use of whole-cell biocatalysis. Appl Environ Microbiol 73:2054–2060

    Article  CAS  Google Scholar 

  • Xie X, Watanabe K, Wojcicki WA, Wang CC, Tang Y (2006) Biosynthesis of lovastatin analogs with a broadly specific acyltransferase. Chem Biol 13:1161–1169

    Article  CAS  Google Scholar 

  • Xu Y, Zhan J, Wijeratne EM, Burns AM, Gunatilaka AA, Molnár I (2007) Cytotoxic and antihaptotactic beauvericin analogues from precursor-directed biosynthesis with the insect pathogen Beauveria bassiana ATCC 7159. J Nat Prod 70:1467–1471

    Article  CAS  Google Scholar 

  • Xu Y, Wijeratne EM, Espinosa-Artiles P, Gunatilaka AA, Molnár I (2009) Combinatorial mutasynthesis of scrambled beauvericins, cyclooligomer depsipeptide cell migration inhibitors from Beauveria bassiana. ChemBioChem 10:345–354

    Article  CAS  Google Scholar 

  • Yaderets VV, Andryushina VA, Voishvillo NE, Stytsenko TS, Zeinalov OA (2009) Studies of synthesis routes for biologically active 14α-hydroxylated steroids. Pharm Chem J 43:55–58

    Article  CAS  Google Scholar 

  • Ye M, Qu G, Guo H, Guo D (2004) Specific 12β-hydroxylation of cinobufagin by filamentous fungi. Appl Environ Microbiol 70:3521–3527

    Article  CAS  Google Scholar 

  • Zaks A (2001) Industrial biocatalysis. Curr Opin Chem Biol 5:130–136

    Article  CAS  Google Scholar 

  • Zhan J, Gunatilaka AA (2006) Microbial transformation of amino- and hydroxyanthraquinones by Beauveria bassiana ATCC 7159. J Nat Prod 69:1525–1527

    Article  CAS  Google Scholar 

  • Zhang J, Zhang L, Wang X, Qiu D, Sun D, Gu J, Fang Q. (1998) Microbial transformation of 10-deacetyl-7-epitaxol and 1β-hydroxybaccatin I by fungi from the inner bark of Taxus yunnanensis. J Nat Prod 61:497–500

    Article  CAS  Google Scholar 

  • Zhang J, Guo H, Tian Y, Liu P, Li N, Zhao J, Guo D (2007) Biotransformation of 20(S)-protopanaxatriol by Mucor spinosus and the cytotoxic structure activity relationships of the transformed products. Phytochem 68:2523–2530

    Article  CAS  Google Scholar 

  • Zhang YY, Liu JH, Qiu LH, Shi YJ, Su ZL, Xia YM, Li FM (2005) Optimisation of cultivation conditions of a mutant of Trichosporon laibachii CBS 5791 for enantioselective resolution of ketoprofen ester. Ann Microbiol 55:101–106

    CAS  Google Scholar 

  • Zhao X, Wang J, Li J, Fu L, Gao J, Du X, Bi H, Zhou Y, Tai G (2009) Highly selective biotransformation of ginsenoside Rb1 to Rd by the phytopathogenic fungus Cladosporium fulvum (syn. Fulvia fulva). J Ind Microbiol Biotechnol 36:721–726

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Hoffmeister .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hüttel, W., Hoffmeister, D. (2011). Fungal Biotransformations in Pharmaceutical Sciences. In: Hofrichter, M. (eds) Industrial Applications. The Mycota, vol 10. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-11458-8_14

Download citation

Publish with us

Policies and ethics