Regret Minimization and Job Scheduling

* Final gross prices may vary according to local VAT.

Get Access


Regret minimization has proven to be a very powerful tool in both computational learning theory and online algorithms. Regret minimization algorithms can guarantee, for a single decision maker, a near optimal behavior under fairly adversarial assumptions. I will discuss a recent extensions of the classical regret minimization model, which enable to handle many different settings related to job scheduling, and guarantee the near optimal online behavior.