Statistical Methods in Cosmology
 L. Verde
 … show all 1 hide
Summary
The advent of large data set in cosmology has meant that in the past 10 or 20 years our knowledge and understanding of the Universe has changed not only quantitatively but also, and most importantly, qualitatively. Cosmologists are interested in studying the origin and evolution of the physical Universe. They rely on data where a host of useful information is enclosed, but is encoded in a nontrivial way. The challenges in extracting this information must be overcome to make the most of the large experimental effort. Even after having analyzed a decade or more of data and having converged to a standard cosmological model (the socalled and highly successful Λ CDM model) we should keep in mind that this model is described by 10 or more physical parameters and if we want to study deviations from the standard model the number of parameters is even larger. Dealing with such a highdimensional parameter space and finding parameters constraints is a challenge on itself. In addition, as gathering data is such an expensive and difficult process, cosmologists want to be able to compare and combine different data sets both for testing for possible disagreements (which could indicate new physics) and for improving parameter determinations. Finally, because experiments are always so expansive, cosmologists in many cases want to find out a priori, before actually doing the experiment, how much one would be able to learn from it. For all these reasons, more and more sophisticated statistical techniques are being employed in cosmology, and it has become crucial to know some statistical background to understand recent literature in the field. Here, I will introduce some statistical tools that any cosmologist should know about in order to be able to understand recently published results from the analysis of cosmological data sets. I will not present a complete and rigorous introduction to statistics as there are several good books which are reported in the references. The reader should refer to those. I will take a practical approach and I will touch upon useful tools such as statistical inference, Bayesians vs Frequentists approach, chisquare and goodness of fit, confidence regions, likelihood, Fisher matrix approach, Monte Carlo methods, and a brief introduction to model testing. Throughout, I will use practical examples often taken from recent literature to illustrate the use of such tools. Of course this will not be an exhaustive guide: it should be interpreted as a “starting kit,” and the reader is warmly encouraged to read the references to find out more.
 J. P Wall, and C. R Jenkins, Practical Statistics for Astronomers, (Cambridge University Press, Cambridge, 2003). CrossRef
 W. H Press et al., Numerical Recipes: The Art of Scientific Computing, Cambridge University Press, Cambridge, 1992).
 M. Kowalski, et al., Astronphys. J. 686, 749 (2008). CrossRef
 W. J Percival, et al., Astronphys. J. 657, 645 (2007). CrossRef
 Legacy Archive for Microwave Background Data Analysis http://lambda.gsfc.nasa.gov/ cosmological parameters plotter.
 J. Hamann, S. Hannestad, G. Raffelt and Y. Y Wong, JCAP 0708, 021 (2007).
 W. Cash, Astronphys. J. 228, 939 (1979). CrossRef
 D. N Spergel, et al., Astron Phys. J. Suppl. 170, 377 (2007). CrossRef
 D. N Spergel, et al., Astron Phys. J. Suppl. 148, 175 (2003). CrossRef
 R.A. Fisher, J. Roy. Stat. Soc. 98, 39 (1935). CrossRef
 A. Kosowsky, M. Milosaljevic and R. Jimenez, Phys. Rev. D66, 063007 (2002).
 A. Refregier, A. Amara, T. Kitching, and A. Rassat, arXiv:0810.1285 (2008).
 L. Verde, H. Peiris, and R. Jimenez, JCAP 0601, 019 (2006).
 D. J Eisenstein, et al. Astronphys. J. 633, 574 (2005).
 S. Cole et al., MNRAS, 362, 505 (2005). CrossRef
 W. Percival, et al. Astronphys. J. 657, 645 (2007). CrossRef
 H. Seo, and D. J Eisenstein, Astronphys. J. 598, 720 (2003). CrossRef
 H. Seo and D. J Eisenstein, Astronphys. J. 664, 679 (2007).
 A. R Liddle, Mon. Not. Roy. Astron. Soc. 351, L49–L53 (2004). CrossRef
 A. O’Hagan, Kendall’s Advanced theory of statistics, Volume 2b, Bayesian Inference, (Arnold, Huntinston Beach, 1992).
 H. Akaike, IEEE Trans. Auto. Contol. 19, 716 (1974). CrossRef
 G. Schwarz, Ann. Stat. 5, 461 (1978). CrossRef
 A. F Heavens, T. D Kitching, and L. Verde, Mon. Not. Roy. Astron. Soc. 380: 1029–1035 (2007). CrossRef
 A. F Heavens, Lectures given at the “Francesco Lucchin” School of Astrophysics, Bertinoro, Italy, 25–29 (May 2009), arXiv:0906.0664
 L. Verde, XIX Canary Island Winter School “The Cosmic Microwave Background: From Quantum Fluctuations to the Present Universe,” (Cambridge University press, Cambridge 2009)
 A. Stuart and J. K Ord, Kendall’s Advanced Theory of Statistics, Volume 1, Distribution Theory, (Arnold, Huntinston Beach, 1924).
 A. Stuart and J. K Ord, Kendall’s Advanced theory of statistics, Volume 2a, Classical Inference and Relationship, (Arnold, Huntinston Beach, 1992).
 V. J Martinez, E. Saar, O.Lahav, and Statistics of the Galaxy Distribution, (Chapman & Hall, New York, 2002).
 Title
 Statistical Methods in Cosmology
 Book Title
 Lectures on Cosmology
 Book Subtitle
 Accelerated Expansion of the Universe
 Pages
 pp 147177
 Copyright
 2010
 DOI
 10.1007/9783642105982_4
 Print ISBN
 9783642105975
 Online ISBN
 9783642105982
 Series Title
 Lecture Notes in Physics
 Series Volume
 800
 Series ISSN
 00758450
 Publisher
 Springer Berlin Heidelberg
 Copyright Holder
 SpringerVerlag Berlin Heidelberg
 Additional Links
 Topics
 eBook Packages
 Editors

 Georg Wolschin ^{(ID1)}
 Editor Affiliations

 ID1. Inst. Theoretische Physik, Universität Heidelberg
 Authors

 L. Verde ^{(1)}
 Author Affiliations

 1. ICREA & ICE (IEECCSIC) and ICC UB, Bellaterra, Spain
Continue reading...
To view the rest of this content please follow the download PDF link above.