Decorrelation and Distinctiveness Provide with Human-Like Saliency

  • Antón Garcia-Diaz
  • Xosé R. Fdez-Vidal
  • Xosé M. Pardo
  • Raquel Dosil
Conference paper

DOI: 10.1007/978-3-642-04697-1_32

Volume 5807 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Garcia-Diaz A., Fdez-Vidal X.R., Pardo X.M., Dosil R. (2009) Decorrelation and Distinctiveness Provide with Human-Like Saliency. In: Blanc-Talon J., Philips W., Popescu D., Scheunders P. (eds) Advanced Concepts for Intelligent Vision Systems. ACIVS 2009. Lecture Notes in Computer Science, vol 5807. Springer, Berlin, Heidelberg

Abstract

In this work, we show the capability of a new model of saliency, of reproducing remarkable psychophysical results. The model presents low computational complexity compared to other models of the state of the art. It is based in biologically plausible mechanisms: the decorrelation and the distinctiveness of local responses. Decorrelation of scales is obtained from principal component analysis of multiscale low level features. Distinctiveness is measured through the Hotelling’s T2 statistic. The model is conceived to be used in a machine vision system, in which attention would contribute to enhance performance together with other visual functions. Experiments demonstrate the consistency with a wide variety of psychophysical phenomena, that are referenced in the visual attention modeling literature, with results that outperform other state of the art models.

Keywords

saliency bottom-up attention eye-fixations 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Antón Garcia-Diaz
    • 1
  • Xosé R. Fdez-Vidal
    • 1
  • Xosé M. Pardo
    • 1
  • Raquel Dosil
    • 1
  1. 1.Grupo de Visión Artificial, Departamento de Electrónica e ComputaciónUniversidade de Santiago de CompostelaSantiago de CompostelaSpain