Chapter

Machine Learning and Knowledge Discovery in Databases

Volume 5781 of the series Lecture Notes in Computer Science pp 344-358

Inference and Validation of Networks

  • Ilias N. FlaounasAffiliated withDepartment of Computer Science, Bristol University
  • , Marco TurchiAffiliated withDepartment of Engineering Mathematics, Bristol University
  • , Tijl De BieAffiliated withDepartment of Engineering Mathematics, Bristol University
  • , Nello CristianiniAffiliated withDepartment of Computer Science, Bristol UniversityDepartment of Engineering Mathematics, Bristol University

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We develop a statistical methodology to validate the result of network inference algorithms, based on principles of statistical testing and machine learning. The comparison of results with reference networks, by means of similarity measures and null models, allows us to measure the significance of results, as well as their predictive power. The use of Generalised Linear Models allows us to explain the results in terms of available ground truth which we expect to be partially relevant. We present these methods for the case of inferring a network of News Outlets based on their preference of stories to cover. We compare three simple network inference methods and show how our technique can be used to choose between them. All the methods presented here can be directly applied to other domains where network inference is used.

Keywords

Network inference Network validation News Outlets network