1.
Abramsky, S.: The lazy lambda calculus. In: Turner, D. (ed.) Research Topics in Functional Programming, pp. 65–116. Addison-Wesley, Reading (1990)
2.
Abramsky, S., Honda, K., McCusker, G.: A fully abstract game semantics for general references. In: Pratt, V. (ed.) Proceedings of the Thirteenth Annual IEEE Symposium on Logic in Computer Science, June 1998, pp. 334–344. IEEE Computer Society Press, Los Alamitos (1998)
CrossRef3.
Ahmed, A., Dreyer, D., Rossberg, A.: State-dependent representation independence. In: Shao, Z., Pierce, B.C. (eds.) Proceedings of the Thirty-Sixth Annual ACM Symposium on Principles of Programming Languages, pp. 340–353. ACM Press, New York (2009)
4.
Ahmed, A.J.: Step-indexed syntactic logical relations for recursive and quantified types. In: Sestoft [56], pp. 69–83
5.
Appel, A.W., McAllester, D.A.: An indexed model of recursive types for foundational proof-carrying code. ACM Transactions on Programming Languages and Systems 23(5), 657–683 (2001)
CrossRef6.
Ariola, Z.M., Herbelin, H.: Minimal classical logic and control operators. In: Baeten, J.C.M., Lenstra, J.K., Parrow, J., Woeginger, G.J. (eds.) ICALP 2003. LNCS, vol. 2719, pp. 871–885. Springer, Heidelberg (2003)
CrossRef7.
Barendregt, H.: The Lambda Calculus: Its Syntax and Semantics. Studies in Logic and the Foundation of Mathematics, vol. 103. North-Holland, Amsterdam (1984) (revised edn.)
MATH8.
Bierman, G.M.: A computational interpretation of the
λμ-calculus. In: Brim, L., Gruska, J., Zlatuška, J. (eds.) MFCS 1998. LNCS, vol. 1450, pp. 336–345. Springer, Heidelberg (1998)
CrossRef9.
Boudol, G.: On the semantics of the call-by-name CPS transform. Theoretical Computer Science 234(1–2), 309–321 (2000)
MATHCrossRefMathSciNet10.
Danvy, O., Nielsen, L.R.: Refocusing in reduction semantics. Research Report BRICS RS-04-26, DAIMI, Department of Computer Science, University of Aarhus, Aarhus, Denmark (November 2004); A preliminary version appears in the informal proceedings of the Second International Workshop on Rule-Based Programming (RULE 2001), Electronic Notes in Theoretical Computer Science, vol. 59.4
11.
David, R., Py, W.:
λμ-calculus and Böhm’s theorem. Journal of Symbolic Logic 66(1), 407–413 (2001)
MATHCrossRefMathSciNet12.
de Groote, P.: On the relation between the lambda-mu-calculus and the syntactic theory of sequential control. In: Pfenning, F. (ed.) LPAR 1994. LNCS, vol. 822, pp. 31–43. Springer, Heidelberg (1994)
13.
Egidi, L., Honsell, F., Ronchi della Rocca, S.: Operational, denotational and logical descriptions: a case study. Fundamenta Informaticae 16(2), 149–169 (1992)
MATHMathSciNet14.
Felleisen, M.: λ-v-CS: An extended λ-calculus for scheme. In: Proceedings of the 1988 ACM Conference on LISP and Functional Programming, pp. 72–85 (1988)
15.
Felleisen, M., Hieb, R.: The revised report on the syntactic theories of sequential control and state. Theoretical Computer Science 103, 235–271 (1992)
MATHCrossRefMathSciNet16.
Friedman, D.P., Haynes, C.T.: Constraining control. In: Deusen, M.S.V., Galil, Z. (eds.) Proceedings of the Twelfth Annual ACM Symposium on Principles of Programming Languages, New Orleans, Louisiana, January 1985, pp. 245–254. ACM Press, New York (1985)
17.
Gordon, A.D.: Bisimilarity as a theory of functional programming. Theoretical Computer Science 228(1–2), 5–47 (1999)
MATHCrossRefMathSciNet18.
Gordon, A.D., Pitts, A.M. (eds.): Higher Order Operational Techniques in Semantics. Publications of the Newton Institute, Cambridge University Press (1998)
19.
Howe, D.J.: Proving congruence of bisimulation in functional programming languages. Information and Computation 124(2), 103–112 (1996)
MATHCrossRefMathSciNet20.
Jacobs, B., Rutten, J.: A tutorial on (co)algebras and (co)induction. Bulletin of the European Association for Theoretical Computer Science 62, 222–259 (1997)
MATH21.
Jagadeesan, R., Pitcher, C., Riely, J.: Open bisimulation for aspects (2009) (Long version, to appear)
22.
Kelsey, R., Clinger, W., Rees, J. (eds.): Revised
5 report on the algorithmic language Scheme. Higher-Order and Symbolic Computation 11(1), 7–105 (1998)
CrossRef23.
Koutavas, V., Wand, M.: Bisimulations for untyped imperative objects. In: Sestoft [56], pp. 146–161
24.
Koutavas, V., Wand, M.: Reasoning about class behavior. In: FOOL/WOOD 2007 Workshop (January 2007)
25.
Koutavas, V., Wand, M.: Small bisimulations for reasoning about higher-order imperative programs. In: Peyton Jones, S. (ed.) Proceedings of the Thirty-Third Annual ACM Symposium on Principles of Programming Languages, Charleston, South Carolina, January 2006. SIGPLAN Notices, vol. 41(1), pp. 141–152. ACM Press, New York (2006)
26.
Laird, J.: Full abstraction for functional languages with control. In: Winskel, G. (ed.) Proceedings of the Twelfth Annual IEEE Symposium on Logic in Computer Science, Warsaw, Poland, June 1997, pp. 58–67. IEEE Computer Society Press, Los Alamitos (1997)
CrossRef27.
Laird, J.: A fully abstract trace semantics for general references. In: Arge, L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp. 667–679. Springer, Heidelberg (2007)
CrossRef28.
Landin, P.J.: The mechanical evaluation of expressions. The Computer Journal 6(4), 308–320 (1964)
MATH29.
Lassen, S.B.: Bisimulation up to context for imperative lambda calculus. Unpublished note. Presented at The Semantic Challenge of Object-Oriented Programming, Schloss Dagstuhl (1998)
30.
Lassen, S.B.: Eager normal form bisimulation. In: Panangaden, P. (ed.) Proceedings of the Twentieth Annual IEEE Symposium on Logic in Computer Science, June 2005, pp. 345–354. IEEE Computer Society Press, Los Alamitos (2005)
31.
Lassen, S.B.: Normal form simulation for McCarty’s amb. In: Escardó, M., Jung, A., Mislove, M. (eds.) Proceedings of the 21st Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXI), May 2005. Electronic Notes in Theoretical Computer Science, vol. 155, pp. 445–465. Elsevier Science Publishers, Amsterdam (2005)
32.
Lassen, S.B.: Head normal form bisimulation for pairs and the λμ-calculus (extended abstract). In: Alur, R. (ed.) Proceedings of the Twenty-First Annual IEEE Symposium on Logic in Computer Science, August 2006, pp. 297–306. IEEE Computer Society Press, Los Alamitos (2006)
33.
Lassen, S.B.: Relational reasoning about contexts. In: Gordon and Pitts [18], pp. 91–135
34.
Lassen, S.B.: Bisimulation in untyped lambda calculus: Böhm trees and bisimulation up to context. In: Brookes, S., Jung, A., Mislove, M., Scedrov, A. (eds.) Proceedings of the 15th Annual Conference on Mathematical Foundations of Programming Semantics, April 1999. Electronic Notes in Theoretical Computer Science, vol. 20, pp. 346–374. Elsevier Science Publishers, Amsterdam (1999)
35.
Lassen, S.B., Levy, P.B.: Typed normal form bisimulation. In: Duparc, J., Henzinger, T.A. (eds.) CSL 2007. LNCS, vol. 4646, pp. 283–297. Springer, Heidelberg (2007)
CrossRef36.
Lassen, S.B., Levy, P.B.: Typed normal form bisimulation for parametric polymorphism. In: Proceedings of the Twenty-Third Annual IEEE Symposium on Logic in Computer Science, pp. 341–352. IEEE Computer Society Press, Los Alamitos (2008)
37.
Levy, P.B.: Game semantics using function inventories. Talk given at Geometry of Computation 2006, Marseille (2006)
38.
Mason, I.A., Talcott, C.L.: Equivalence in functional languages with effects. Journal of Functional Programming 1(3), 297–327 (1991)
CrossRefMathSciNet39.
Merro, M., Biasi, C.: On the observational theory of the CPS-calculus (extended abstract). In: Brookes, S., Mislove, M. (eds.) Proceedings of the 22nd Annual Conference on Mathematical Foundations of Programming Semantics (MFPS XXII), May 2006. Electronic Notes in Theoretical Computer Science, vol. 158, pp. 307–330. Elsevier Science Publishers, Amsterdam (2006)
40.
Meyer, A.R., Sieber, K.: Towards fully abstract semantics for local variables: Preliminary report. In: Ferrante, J., Mager, P. (eds.) Proceedings of the Fifteenth Annual ACM Symposium on Principles of Programming Languages, January 1988, pp. 157–169. ACM Press, New York (1988)
41.
Milner, R., Tofte, M., Harper, R., MacQueen, D.: The Definition of Standard ML (Revised). The MIT Press, Cambridge (1997)
42.
Mosses, P.D.: Component-based description of programming languages. In: Visions of Computer Science, Proc. BCS International Academic Research Conference, pp. 275–286. BCS, London (2008)
43.
Mosses, P.D.: Action Semantics. Cambridge Tracts in Theoretical Computer Science, vol. (26). Cambridge University Press, Cambridge (1992)
MATH44.
Mosses, P.D.: Theory and practice of action semantics. In: Penczek, W., Szałas, A. (eds.) MFCS 1996. LNCS, vol. 1113, pp. 37–61. Springer, Heidelberg (1996)
45.
Parigot, M.:
λμ-calculus: an algorithmic interpretation of classical natural deduction. In: Voronkov, A. (ed.) LPAR 1992. LNCS, vol. 624, pp. 190–201. Springer, Heidelberg (1992)
CrossRef46.
Perez, R.P.: An extensional partial combinatory algebra based on λ-terms. In: Tarlecki, A. (ed.) MFCS 1991. LNCS, vol. 520, pp. 387–396. Springer, Heidelberg (1991)
47.
Pitts, A.M.: Reasoning about local variables with operationally-based logical relations. In: O’Hearn, P.W., Tennent, R.D. (eds.) Algol-Like Languages, ch. 17, vol. 2, pp. 173–193. Birkhauser, Basel (1997); Reprinted from Proceedings Eleventh Annual IEEE Symposium on Logic in Computer Science, pp. 152–163 (1996)
48.
Pitts, A.M., Stark, I.D.B.: Operational reasoning for functions with local state. In: Gordon and Pitts [18], pp. 227–273
49.
Plotkin, G.D.: Call-by-name, call-by-value and the
λ-calculus. Theoretical Computer Science 1, 125–159 (1975)
MATHCrossRefMathSciNet50.
Ritter, E., Pitts, A.M.: A fully abstract translation between a
λ-calculus with reference types and Standard ML. In: Dezani-Ciancaglini, M., Plotkin, G. (eds.) TLCA 1995. LNCS, vol. 902, pp. 397–413. Springer, Heidelberg (1995)
CrossRef51.
Sangiorgi, D.: Expressing Mobility in Process Algebras: First-Order and Higher-Order Paradigms. PhD thesis, University of Edinburgh (1992); LFCS report ECS-LFCS-93-266 (also published as CST-99-93)
52.
Sangiorgi, D.: A theory of bisimulation for the pi-calculus. Acta Informatica 33, 69–97 (1996),
ftp://ftp-sop.inria.fr/mimosa/personnel/davides/sub.ps.gz
CrossRefMathSciNet53.
Sangiorgi, D.: Lazy functions and mobile processes. In: Proof, language, and interaction: essays in honour of Robin Milner, pp. 691–720. MIT Press, Cambridge (2000)
54.
Sangiorgi, D.: The lazy lambda calculus in a concurrency scenario. Information and Computation 111(1), 120–153 (1994)
MATHCrossRefMathSciNet55.
Sangiorgi, D., Kobayashi, N., Sumii, E.: Environmental bisimulations for higher-order languages. In: Ong, C.L. (ed.) Proceedings of the Twenty-Second Annual IEEE Symposium on Logic in Computer Science, Wroclaw, Poland, July 2007, pp. 293–302. IEEE Computer Society Press, Los Alamitos (2007)
56.
Sestoft, P. (ed.): ESOP 2006. LNCS, vol. 3924. Springer, Heidelberg (2006)
MATH57.
Støvring, K.: On Reasoning Equationally: Lambda Calculi and Programs with Computational Effects. PhD thesis, BRICS PhD School, University of Aarhus, Aarhus, Denmark (August 2007)
58.
Støvring, K., Lassen, S.B.: A complete, co-inductive syntactic theory of sequential control and state. In: Felleisen, M. (ed.) Proceedings of the Thirty-Fourth Annual ACM Symposium on Principles of Programming Languages, Nice, France, January 2007. SIGPLAN Notices, vol. 42(1), pp. 161–172. ACM Press, New York (2007)
59.
Sumii, E.: A theory of non-monotone memory (or: Contexts for free). In: Castagna, G. (ed.) ESOP 2009. LNCS, vol. 5502, pp. 237–251. Springer, Heidelberg (2009)
60.
Sumii, E.: A complete characterization of observational equivalence in polymorphic lambda-calculus with general references (manuscript) (January 2009)
61.
Sumii, E., Pierce, B.C.: A bisimulation for type abstraction and recursion. In: Abadí, M. (ed.) Proceedings of the Thirty-Second Annual ACM Symposium on Principles of Programming Languages, Long Beach, California, January 2005. SIGPLAN Notices, vol. 40(1), pp. 63–74. ACM Press, New York (2005)
62.
Talcott, C.: Reasoning about functions with effects. In: Gordon and Pitts [18], pp. 347–390
63.
Vytiniotis, D., Koutavas, V.: Relating step-indexed logical relations and bisimulations. Technical Report MSR-TR-2009-25, Microsoft Research, Cambridge (March 2009)
64.
Wand, M., Sullivan, G.T.: Denotational semantics using an operationally-based term model. In: Jones, N.D. (ed.) Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of Programming Languages, France, January 1997, pp. 386–399. ACM Press, New York (1997)