Skip to main content

Shortest Path Problems on a Polyhedral Surface

  • Conference paper
Book cover Algorithms and Data Structures (WADS 2009)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 5664))

Included in the following conference series:

Abstract

We develop algorithms to compute edge sequences, Voronoi diagrams, shortest path maps, the Fréchet distance, and the diameter of a polyhedral surface. Distances on the surface are measured by the length of a Euclidean shortest path. Our main result is a linear factor speedup for the computation of all shortest path edge sequences and the diameter of a convex polyhedral surface. This speedup is achieved with kinetic Voronoi diagrams. We also use the star unfolding to compute a shortest path map and the Fréchet distance of a non-convex polyhedral surface.

This work has been supported by the National Science Foundation grant NSF CAREER CCF-0643597. Previous versions of this work have appeared in [12,13].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agarwal, P.K., Aronov, B., O’Rourke, J., Schevon, C.A.: Star unfolding of a polytope with applications. SIAM Journal on Computing 26(6), 1689–1713 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Agarwal, P.K., Sharir, M.: Davenport–Schinzel Sequences and Their Geometric Applications. Handbook of Computational Geometry, pp. 1–47. Elsevier, Amsterdam (2000)

    MATH  Google Scholar 

  3. Albers, G., Mitchell, J.S.B., Guibas, L.J., Roos, T.: Voronoi diagrams of moving points. Journal of Computational Geometry & Applications 8, 365–380 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aleksandrov, L., Djidjev, H., Huo, G., Maheshwari, A., Nussbaum, D., Sack, J.-R.: Approximate shortest path queries on weighted polyhedral surfaces. In: Královič, R., Urzyczyn, P. (eds.) MFCS 2006. LNCS, vol. 4162, pp. 98–109. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  5. Alt, H., Godau, M.: Computing the Fréchet distance between two polygonal curves. Journal of Computational Geometry & Applications 5, 75–91 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  6. Aronov, B., O’Rourke, J.: Nonoverlap of the star unfolding. Discrete and Computational Geometry 8(1), 219–250 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  7. Chandru, V., Hariharan, R., Krishnakumar, N.M.: Short-cuts on star, source and planar unfoldings. In: Lodaya, K., Mahajan, M. (eds.) FSTTCS 2004. LNCS, vol. 3328, pp. 174–185. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  8. Chen, J., Han, Y.: Shortest paths on a polyhedron. Journal of Computational Geometry & Applications 6(2), 127–144 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chiang, Y., Mitchell, J.S.B.: Two-point Euclidean shortest path queries in the plane. In: 10th Symposium on Discrete Algorithms (SODA), pp. 215–224 (1999)

    Google Scholar 

  10. Cook IV, A.F., Wenk, C.: Geodesic Fréchet distance inside a simple polygon. In: 25th Symposium on Theoretical Aspects of Computer Science, STACS (2008)

    Google Scholar 

  11. Cook IV, A.F., Wenk, C.: Geodesic Fréchet distance with polygonal obstacles. Technical Report CS-TR-2008-010, University of Texas at San Antonio (2008)

    Google Scholar 

  12. Cook IV, A.F., Wenk, C.: Shortest path problems on a polyhedral surface. Technical Report CS-TR-2009-001, University of Texas at San Antonio (2009)

    Google Scholar 

  13. Cook IV, A.F., Wenk, C.: Shortest path problems on a polyhedral surface. In: 25th European Workshop on Computational Geometry (EuroCG) (2009)

    Google Scholar 

  14. Demaine, E.D., O’Rourke, J.: Geometric Folding Algorithms: Linkages, Origami, Polyhedra. Cambridge University Press, New York (2007)

    Book  MATH  Google Scholar 

  15. Devillers, O., Golin, M., Kedem, K., Schirra, S.: Queries on Voronoi diagrams of moving points. Computational Geometry: Theory & Applications 6(5), 315–327 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Guibas, L.J., Hershberger, J., Leven, D., Sharir, M., Tarjan, R.E.: Linear-time algorithms for visibility and shortest path problems inside triangulated simple polygons. Algorithmica 2, 209–233 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  17. Hershberger, J., Suri, S.: An optimal algorithm for Euclidean shortest paths in the plane. SIAM Journal on Computing 28(6), 2215–2256 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hwang, Y.-H., Chang, R.-C., Tu, H.-Y.: Finding all shortest path edge sequences on a convex polyhedron. In: Dehne, F., Santoro, N., Sack, J.-R. (eds.) WADS 1989. LNCS, vol. 382. Springer, Heidelberg (1989)

    Chapter  Google Scholar 

  19. Maheshwari, A., Yi, J.: On computing Fréchet distance of two paths on a convex polyhedron. In: 21st European Workshop on Computational Geometry (EuroCG) (2005)

    Google Scholar 

  20. Mitchell, J.S.B., Mount, D.M., Papadimitriou, C.H.: The discrete geodesic problem. SIAM Journal on Computing 16(4), 647–668 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Mount, D.M.: The number of shortest paths on the surface of a polyhedron. SIAM Journal on Computing 19(4), 593–611 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  22. O’Rourke, J., Schevon, C.: Computing the geodesic diameter of a 3-polytope. In: 5th Symposium on Computational Geometry (SoCG), pp. 370–379 (1989)

    Google Scholar 

  23. Schevon, C., O’Rourke, J.: The number of maximal edge sequences on a convex polytope. In: 26th Allerton Conference on Communication, Control, and Computing, pp. 49–57 (1988)

    Google Scholar 

  24. Schreiber, Y., Sharir, M.: An optimal-time algorithm for shortest paths on a convex polytope in three dimensions. Discrete & Computational Geometry 39(1-3), 500–579 (2008)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cook, A.F., Wenk, C. (2009). Shortest Path Problems on a Polyhedral Surface. In: Dehne, F., Gavrilova, M., Sack, JR., Tóth , C.D. (eds) Algorithms and Data Structures. WADS 2009. Lecture Notes in Computer Science, vol 5664. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-03367-4_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-03367-4_14

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-03366-7

  • Online ISBN: 978-3-642-03367-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics