Joint Bayesian Cortical Sulci Recognition and Spatial Normalization

  • Matthieu Perrot
  • Denis Rivière
  • Alan Tucholka
  • Jean-François Mangin
Conference paper

DOI: 10.1007/978-3-642-02498-6_15

Volume 5636 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Perrot M., Rivière D., Tucholka A., Mangin JF. (2009) Joint Bayesian Cortical Sulci Recognition and Spatial Normalization. In: Prince J.L., Pham D.L., Myers K.J. (eds) Information Processing in Medical Imaging. IPMI 2009. Lecture Notes in Computer Science, vol 5636. Springer, Berlin, Heidelberg

Abstract

In this paper, we study the recognition of about 60 sulcal structures over a new T1 MRI database of 62 subjects. It continues our previous work [7] and more specifically extends the localization model of sulci (SPAM). This model is sensitive to the chosen common space during the group study. Thus, we focus the current work on refining this space using registration techniques. Nevertheless, we also benefit from the sulcuswise localization variability knowledge to constrain the normalization. So, we propose a consistent Bayesian framework to jointly identify and register sulci, with two complementary normalization techniques and their detailed integration in the model: a global rigid transformation followed by a piecewise rigid-one, sulcus after sulcus. Thereby, we have improved the sulci labeling quality to a global recognition rate of 86%, and moreover obtained a basic but robust registration technique.

Keywords

cortical folds labeling sulci registration SPAM EM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2009

Authors and Affiliations

  • Matthieu Perrot
    • 1
    • 2
    • 4
  • Denis Rivière
    • 1
    • 4
  • Alan Tucholka
    • 1
    • 3
    • 4
  • Jean-François Mangin
    • 1
    • 2
    • 4
  1. 1.CEA, Neurospin, LNAOSaclayFrance
  2. 2.INSERM U.797OrsayFrance
  3. 3.INRIA Saclay-île-de-France, ParietalSaclayFrance
  4. 4.IFR 49ParisFrance