Skip to main content

Mathematical Modeling of Language Games

  • Chapter
  • First Online:

Abstract

In this chapter we explore several language games of increasing complexity. We first consider the so-called Naming Game, possibly the simplest example of the complex processes leading progressively to the establishment of human-like languages. In this framework, a globally shared vocabulary emerges as a result of local adjustments of individual word-meaning association. The emergence of a common vocabulary only represents a first stage while it is interesting to investigate the emergence of higher forms of agreement, e.g., compositionality, categories, syntactic or grammatical structures. As an example in this direction we consider the so-called Category Game. Here one focuses on the process by which a population of individuals manages to categorize a single perceptually continuous channel. The problem of the emergence of a discrete shared set of categories out of a continuous perceptual channel is a notoriously difficult problem relevant for color categorization, vowels formation, etc. The central result here is the emergence of a hierarchical category structure made of two distinct levels: a basic layer, responsible for fine discrimination of the environment, and a shared linguistic layer that groups together perceptions to guarantee communicative success.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abrams, D., & Strogatz, S. (2003). Modelling the dynamics of language death. Nature, 424, 900.

    Article  Google Scholar 

  • Axelrod, R. (1997). The dissemination of culture: a model with local convergence and global polarization. The Journal of Conflict Resolution, 41(2), 203–226.

    Article  Google Scholar 

  • Barabási, A.-L., & Albert, R. (1999). Emergence of scaling in random networks. Science, 286, 509.

    Article  MathSciNet  Google Scholar 

  • Barnes, J. B. (Ed.) (1995). The complete works of Aristotle: the revised Oxford translation. Bollingen series (Vol. LXXI). Princeton: Princeton University Press.

    Google Scholar 

  • Baronchelli, A., Dall’Asta, L., Barrat, A., & Loreto, V. (2006a). Topology induced coarsening in language games. Physical Revue E, 73, 015102.

    Article  MathSciNet  Google Scholar 

  • Baronchelli, A., Felici, M., Loreto, V., Caglioti, E., & Steels, L. (2006b). Sharp transition towards shared vocabularies in multi-agent systems. Journal of Statistical Mechanics, P06014.

    Google Scholar 

  • Baronchelli, A., Dall’Asta, L., Barrat, A., & Loreto, V. (2007). Non-equilibrium phase transition in negotiation dynamics. Physical Revue E, 76, 051102.

    Article  Google Scholar 

  • Belpaeme, T., & Bleys, J. (2005). Explaining universal color categories through a constrained acquisition process. Adaptive Behavior, 13, 293–310.

    Article  Google Scholar 

  • Berlin, B., & Kay, P. (1969). Basic color terms: their universality and evolution. California: University of California Press. (Reprinted 1991).

    Google Scholar 

  • Bray, A. (1994). Theory of phase-ordering kinetics. Advances in Physics, 43(3), 357–459.

    Article  MathSciNet  Google Scholar 

  • Brighton, H., Smith, K., & Kirby, S. (2005). Language as an evolutionary system. Physics of Life Reviews, 2, 177–226.

    Article  Google Scholar 

  • Briscoe, T. (Ed.) (2002). Linguistic evolution through language acquisition. Cambridge: Cambridge University Press.

    Google Scholar 

  • Castellano, C., Fortunato, S., & Loreto, V. (2009). Statistical physics of social dynamics. Revues of Modern Physics.

    Google Scholar 

  • Castelló, X., Eguíluz, V., & San Miguel, M. (2006). Ordering dynamics with two non-excluding options: bilingualism in language competition. New Journal of Physics, 8(12), 308.

    Article  Google Scholar 

  • Cattuto, C., Loreto, V., & Pietronero, L. (2007). Semiotic dynamics and collaborative tagging. Proceedings of the National Academy of Sciences of the United State of America, 104, 1461–1464.

    Article  Google Scholar 

  • Coehn, H., & Lefebvre, C. L. (Eds.) (2005). Handbook of categorization in cognitive science. New York: Elsevier.

    Google Scholar 

  • Dall’Asta, L., & Baronchelli, A. (2006). Microscopic activity patterns in the naming game. Journal of Physics A, 39, 14851–14867.

    Article  MATH  MathSciNet  Google Scholar 

  • Dall’Asta, L., Baronchelli, A., Barrat, A., & Loreto, V. (2006b). Nonequilibrium dynamics of language games on complex networks. Physical Revue E, 74(3), 036105.

    Article  Google Scholar 

  • Dall’Asta, L., Baronchelli, A., Barrat, A., & Loreto, V. (2006a). Agreement dynamics on small-world networks. Europhysics Letters, 73(6), 969–975.

    Article  MathSciNet  Google Scholar 

  • Debenedetti, P. G., & Stillinger, F. H. (2001). Supercooled liquids and the glass transition. Nature, 410, 259.

    Article  Google Scholar 

  • Erdös, P., & Rényi, A. (1959). On random graphs I. Publicationes Mathematicae (Debrecen), 6, 290.

    MATH  MathSciNet  Google Scholar 

  • Erdös, P., & Rényi, A. (1960). On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences, 7, 17.

    Google Scholar 

  • Gardner, H. (1987). The mind’s new science: a history of the cognitive revolution. New York: Basic Books.

    Google Scholar 

  • Garrod, G., & Anderson, A. (1987). Saying what you mean in dialogue: a study in conceptual and semantic co-ordination. Cognition, 27, 181.

    Article  Google Scholar 

  • Gosti, G. (2007). Role of the homonymy in the naming game. Undergraduate thesis, “Sapienza” Univ. of Rome.

    Google Scholar 

  • Hurford, J. (1989). Biological evolution of the Saussurean sign as a component of the language acquisition device in linguistic evolution. Lingua, 77, 187.

    Article  Google Scholar 

  • Hurford, J. R., Studdert-Kennedy, M., & Knight, C. (Eds.) (1998). Approaches to the evolution of language: social and cognitive bases. Cambridge: Cambridge University Press.

    Google Scholar 

  • Ke, J., Minett, J., Au, C.-P., & Wang, W. (2002). Self-organization and selection in the emergence of vocabulary. Complexity, 7(3), 41–54.

    Article  MathSciNet  Google Scholar 

  • Ke, J., Gong, T., & Wang, W.-Y. (2008). Language change and social networks. Computer Physics Communications, 3(4), 935–949. Originally presented at the 5th conference on language evolution, Leipzig, Germany, March 2004.

    MATH  Google Scholar 

  • Kirby, S., & Christiansen, M. (Eds.) (2005). Language evolution. Oxford: Oxford University Press.

    Google Scholar 

  • Klemm, K., Eguíluz, V. M., Toral, R., & San Miguel, M. (2003). Nonequilibrium transitions in complex networks: a model of social interaction. Physical Revue E, 67(2), 026120.

    Article  Google Scholar 

  • Komarova, N. L. (2006). Population dynamics of human language: a complex system. In Frontiers of engineering: reports on leading-edge engineering from the 2005 symposium (pp. 89–98).

    Google Scholar 

  • Komarova, N. L., & Niyogi, P. (2004). Optimizing the mutual intelligibility of linguistic agents in a shared world. Artificial Intelligence, 154(1–2), 1–42.

    Article  MATH  MathSciNet  Google Scholar 

  • Komarova, N. L., Jameson, K. A., & Narens, N. (2007). Evolutionary models of color categorization based on discrimination. Journal of Mathematical Psychology, 51, 359–382.

    Article  MATH  MathSciNet  Google Scholar 

  • Labovin, W., Bailey, C.-J., & Shuy, R. (1973). New ways of analyzing variation in English. Washington: Georgetown University Press.

    Google Scholar 

  • Lakoff, G. (1987). Women, fire and dangerous things. Chicago: Chicago University Press.

    Google Scholar 

  • Lenaerts, T., Jansen, B., Tuyls, K., & de Vylder, B. (2005). The evolutionary language game: an orthogonal approach. Journal of Theoretical Biology, 235(4), 566–582.

    Article  MathSciNet  Google Scholar 

  • Lindsey, D. T., & Brown, A. M. (2006). Universality of color names. Proceedings of the National Academy of Sciences of the United State of America, 103, 16608.

    Article  Google Scholar 

  • Lipowski, A., & Lipowska, D. (2008). Computational approach to the emergence and evolution of language—evolutionary naming game model.

    Google Scholar 

  • Loreto, V., & Steels, L. (2007). Social dynamics: the emergence of language. Nature Physics, 3, 758–760.

    Article  Google Scholar 

  • Lu, Q., Korniss, G., & Szymanski, B. K. (2008). Naming games in two-dimensional and small-world-connected random geometric networks. Physical Revue E, 77(1), 016111.

    Article  Google Scholar 

  • Maynard-Smith, J., & Szathmary, E. (1997). The major transitions in evolution. New York: Oxford University Press.

    Google Scholar 

  • Mezard, M., Parisi, G., & Virasoro, M. A. (1987). Spin glass theory and beyond. Hackensack: World Scientific.

    MATH  Google Scholar 

  • Minett, J. W., & Wang, W. S. Y. (2008). Modeling endangered languages: the effects of bilingualism and social structure. Lingua, 118(1), 19–45. Preprint 2004.

    Article  Google Scholar 

  • Nowak, M. A. (2006). Evolutionary dynamics: exploring the equations of life. Cambridge: Harvard University Press.

    MATH  Google Scholar 

  • Nowak, M. A., & Krakauer, D. C. (1999). The evolution of language. Proceedings of the National Academy of Sciences of the United State of America, 98, 13189.

    Google Scholar 

  • Nowak, M. A., Plotkin, J., & Krakauer, D. (1999a). The evolutionary language game. Journal of Theoretical Biology, 200(2), 147–162.

    Article  Google Scholar 

  • Nowak, M. A., Plotkin, J. B., & Krakauer, D. C. (1999b). The evolutionary language game. Journal of Theoretical Biology, 200, 147.

    Article  Google Scholar 

  • Nowak, M. A., Plotkin, J., & Jansen, V. (2000). The evolution of syntactic communication. Nature, 404(6777), 495–498.

    Article  Google Scholar 

  • Nowak, M. A., Komarova, N. L., & Niyogi, P. (2002). Computational and evolutionary aspects of language. Nature, 417, 611.

    Article  Google Scholar 

  • Oliphant, M. (1997). Formal approaches to innate and learned communicaton: laying the foundation for language. Ph.D. thesis, University of California, San Diego.

    Google Scholar 

  • Oliphant, M., & Batali, J. (1996). Learning and the emergence of coordinated communication. The Newsletter of the Center for Research on Language, 11(1).

    Google Scholar 

  • Puglisi, A., Baronchelli, A., & Loreto, V. (2008). Cultural route to the emergence of linguistic categories. Proceedings of the National Academy of Sciences of the United State of America, 105, 7936–7940.

    Article  Google Scholar 

  • Saunders, B. A. C., & van Brakel, J. (1997). Are there nontrivial constraints on colour categorization? Behavioral and Brain Sciences, 20, 167.

    Article  Google Scholar 

  • Selten, R., & Warglien, M. (2007). The emergence of simple languages in an experimental coordination game. Proceedings of the National Academy of Sciences of the United State of America, 104, 7361.

    Article  Google Scholar 

  • Steels, L. (1995). A self-organizing spatial vocabulary. Artificial Life, 2(3), 319–332.

    Article  Google Scholar 

  • Steels, L. (1996). Self-organizing vocabularies. In C. Langton & T. Shimohara (Eds.), Artificial life V: proceeding of the fifth international workshop on the synthesis and simulation of living systems (pp. 179–184). Cambridge: MIT Press.

    Google Scholar 

  • Steels, L. (Ed.) (1998). The evolution of language. Selected papers from 2nd international conference on the evolution of language, London.

    Google Scholar 

  • Steels, L. (2000). Language as a complex adaptive system. In M. Schoenauer (Ed.), Lecture notes in computer science. Proceedings of PPSN VI. Berlin: Springer.

    Google Scholar 

  • Steels, L. (2005). The emergence and evolution of linguistic structure: from lexical to grammatical communication systems. Connection Science, 17(3-4), 213–230.

    Article  Google Scholar 

  • Steels, L. (2006). Semiotic dynamics for embodied agents. IEEE Intelligent Systems, 21, 32.

    Article  Google Scholar 

  • Steels, L., & Belpaeme, T. (2005). Coordinating perceptually grounded categories through language: a case study for colour. Behavioral and Brain Sciences, 28, 469–529.

    Google Scholar 

  • Taylor, J. R. (1995). Linguistic categorization: prototypes in linguistic theory. New York: Oxford University Press.

    Google Scholar 

  • Wang, W. S.-Y., & Minett, J. W. (2005). The invasion of language: emergence, change and death. Trends in Ecology & Evolution, 20(5), 263–269.

    Article  Google Scholar 

  • Wittgenstein, L. (1953a). Philosophical investigations. Oxford: Basil Blackwell. (Translated by Anscombe, G.E.M.).

    Google Scholar 

  • Wittgenstein, L. (1953b). Philosophische Untersuchungen. Frankfurt am Main: Suhrkamp.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vittorio Loreto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Loreto, V., Baronchelli, A., Puglisi, A. (2010). Mathematical Modeling of Language Games. In: Nolfi, S., Mirolli, M. (eds) Evolution of Communication and Language in Embodied Agents. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-01250-1_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-01250-1_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-01249-5

  • Online ISBN: 978-3-642-01250-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics