1.
Ateniese, G., Camenisch, J.L., Joye, M., Tsudik, G.: A Practical and Provably Secure Coalition-Resistant Group Signature Scheme. In: Bellare, M. (ed.) CRYPTO 2000. LNCS, vol. 1880, p. 255. Springer, Heidelberg (2000)
CrossRef2.
Ateniese, G., Camenisch, J., Joye, M., Tsudik, G.: Remarks on ”analysis of one popular group signature scheme” in asiacrypt 2006. Cryptology ePrint Archive, Report 2006/464 (2006),
http://eprint.iacr.org/
3.
Ateniese, G., Song, D.X., Tsudik, G.: Quasi-efficient revocation in group signatures. In: Blaze, M. (ed.) FC 2002. LNCS, vol. 2357, pp. 183–197. Springer, Heidelberg (2003)
CrossRef4.
Bangerter, E.: On Efficient Zero-Knowledge Proofs of Knowledge. PhD thesis, Ruhr U. Bochum (2005)
5.
Bangerter, E., Camenisch, J.L., Maurer, U.M.: Efficient proofs of knowledge of discrete logarithms and representations in groups with hidden order. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 154–171. Springer, Heidelberg (2005),
http://www.zurich.ibm.com/~/jca/papers/bacama05.pdf
6.
Bellare, M., Goldreich, O.: On Defining Proofs of Knowledge. In: Brickell, E.F. (ed.) CRYPTO 1992. LNCS, vol. 740, pp. 390–420. Springer, Heidelberg (1993)
7.
Boudot, F.: Efficient Proofs that a Committed Number Lies in an Interval. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 431–444. Springer, Heidelberg (2000)
CrossRef8.
Bresson, E., Stern, J.: Efficient revocation in group signatures. In: Kim, K.-c. (ed.) PKC 2001. LNCS, vol. 1992, pp. 190–206. Springer, Heidelberg (2001)
CrossRef9.
Brickell, E., Camenisch, J., Chen, L.: Direct anonymous attestation. In: Proc. 11th ACM Conference on Computer and Communications Security, pp. 225–234. ACM Press, New York (2004)
10.
Bussard, L., Molva, R., Roudier, Y.: History-Based Signature or How to Trust Anonymous Documents. In: Jensen, C., Poslad, S., Dimitrakos, T. (eds.) iTrust 2004. LNCS, vol. 2995, pp. 78–92. Springer, Heidelberg (2004)
11.
Bussard, L., Roudier, Y., Molva, R.: Untraceable secret credentials: Trust establishment with privacy. In: PerCom Workshops, pp. 122–126. IEEE Computer Society, Los Alamitos (2004)
12.
Camenisch, J., Kiayias, A., Yung, M.: On the portability of generalized schnorr proofs. Technical report, Cryptology ePrint Archive (2009)
13.
Camenisch, J.L., Shoup, V.: Practical Verifiable Encryption and Decryption of Discrete Logarithms. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 126–144. Springer, Heidelberg (2003)
14.
Camenisch, J.L., Stadler, M.A.: Efficient Group Signature Schemes for Large Groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)
15.
Camenisch, J.L.: Group Signature Schemes and Payment Systems Based on the Discrete Logarithm Problem. PhD thesis, ETH Zürich, Diss. ETH No. 12520. Hartung Gorre Verlag, Konstanz (1998)
16.
Cao, Z.: Analysis of One Popular Group Signature Scheme. In: Lai, X., Chen, K. (eds.) ASIACRYPT 2006. LNCS, vol. 4284, pp. 460–466. Springer, Heidelberg (2006)
CrossRef17.
Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy Come - Easy Go Divisible Cash. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 561–575. Springer, Heidelberg (1998)
CrossRef18.
Chan, A.H., Frankel, Y., Tsiounis, Y.: Easy come - easy go divisible cash. GTE Technical Report (1998),
http://www.ccs.neu.edu/home/yiannis/pubs.html
19.
Cramer, R., Shoup, V.: Signature schemes based on the strong rsa assumption. ACM Trans. Inf. Syst. Secur. 3(3), 161–185 (2000)
CrossRef20.
Damgård, I.B.: Efficient concurrent zero-knowledge in the auxiliary string model. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 418–430. Springer, Heidelberg (2000)
CrossRef21.
Damgård, I.B., Fujisaki, E.: A Statistically-Hiding Integer Commitment Scheme Based on Groups with Hidden Order. In: Zheng, Y. (ed.) ASIACRYPT 2002. LNCS, vol. 2501, pp. 125–142. Springer, Heidelberg (2002)
CrossRef22.
Fiat, A., Shamir, A.: How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)
23.
Fujisaki, E., Okamoto, T.: Statistical Zero Knowledge Protocols to Prove Modular Polynomial Relations. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 16–30. Springer, Heidelberg (1997)
24.
Furukawa, J., Yonezawa, S.: Group Signatures with Separate and Distributed Authorities. In: Blundo, C., Cimato, S. (eds.) SCN 2004. LNCS, vol. 3352, pp. 77–90. Springer, Heidelberg (2005)
25.
Gaud, M., Traoré, J.: On the Anonymity of Fair Offline E-cash Systems. In: Wright, R.N. (ed.) FC 2003. LNCS, vol. 2742, pp. 34–50. Springer, Heidelberg (2003)
26.
Goldreich, O., Micali, S., Wigderson, A.: How to play any mental game. In: STOC 1987: Proceedings of the nineteenth annual ACM conference on Theory of computing, pp. 218–229. ACM Press, New York (1987)
CrossRef27.
Goldreich, O.: The Foundations of Cryptography, vol. 2. Cambridge University Press, Cambridge (1999)
28.
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM Journal on Computing 18(1), 186–208 (1989)
MATHCrossRefMathSciNet29.
Kunz-Jacques, S., Martinet, G., Poupard, G., Stern, J.: Cryptanalysis of an Efficient Proof of Knowledge of Discrete Logarithm. In: Yung, M., Dodis, Y., Kiayias, A., Malkin, T.G. (eds.) PKC 2006. LNCS, vol. 3958, pp. 27–43. Springer, Heidelberg (2006)
CrossRef30.
Van Le, T., Nguyen, K.Q., Varadharajan, V.: How to Prove That a Committed Number Is Prime. In: Lam, K.-Y., Okamoto, E., Xing, C. (eds.) ASIACRYPT 1999. LNCS, vol. 1716, pp. 208–218. Springer, Heidelberg (1999)
31.
Lysyanskaya, A., Ramzan, Z.: Group Blind Digital Signatures: A Scalable Solution to Electronic Cash. In: Hirschfeld, R. (ed.) FC 1998. LNCS, vol. 1465, pp. 184–197. Springer, Heidelberg (1998)
CrossRef32.
MacKenzie, P.D., Reiter, M.K.: Two-party generation of DSA signatures. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 137–154. Springer, Heidelberg (2001)
CrossRef33.
Mykletun, E., Narasimha, M., Tsudik, G.: Signature Bouquets: Immutability for Aggregated/Condensed Signatures. In: Samarati, P., Ryan, P.Y.A., Gollmann, D., Molva, R. (eds.) ESORICS 2004. LNCS, vol. 3193, pp. 160–176. Springer, Heidelberg (2004)
34.
Nakanishi, T., Shiota, M., Sugiyama, Y.: An Efficient Online Electronic Cash with Unlinkable Exact Payments. In: Zhang, K., Zheng, Y. (eds.) ISC 2004. LNCS, vol. 3225, pp. 367–378. Springer, Heidelberg (2004)
35.
Pointcheval, D., Stern, J.: Security arguments for digital signatures and blind signatures. Journal of Cryptology 13(3), 361–396 (2000)
MATHCrossRef36.
De Santis, A., Micali, S., Persiano, G.: Noninteractive Zero-Knowledge Proof Systems. In: Pomerance, C. (ed.) CRYPTO 1987. LNCS, vol. 293, pp. 52–72. Springer, Heidelberg (1988)
37.
Schnorr, C.P.: Efficient signature generation by smart cards. Journal of Cryptology 4(3), 161–174 (1991)
MATHCrossRefMathSciNet38.
Song, D.X.: Practical forward secure group signature schemes. In: Proc. 8th ACM Conference on Computer and Communications Security, pp. 225–234. ACM press, New York (2001)
CrossRef39.
Susilo, W., Mu, Y.: On the Security of Nominative Signatures. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 329–335. Springer, Heidelberg (2005)
40.
Tang, C., Liu, Z., Wang, M.: A verifiable secret sharing scheme with statistical zero-knowledge. Cryptology ePrint Archive, Report 2003/222 (2003),
http://eprint.iacr.org/
41.
Tsang, P.P., Wei, V.K.: Short Linkable Ring Signatures for E-Voting, E-Cash and Attestation. In: Deng, R.H., Bao, F., Pang, H., Zhou, J. (eds.) ISPEC 2005. LNCS, vol. 3439, pp. 48–60. Springer, Heidelberg (2005)
42.
Tsang, P.P., Wei, V.K., Chan, T.K., Au, M.H., Liu, J.K., Wong, D.S.: Separable Linkable Threshold Ring Signatures. In: Canteaut, A., Viswanathan, K. (eds.) INDOCRYPT 2004. LNCS, vol. 3348, pp. 384–398. Springer, Heidelberg (2004)
43.
Wei, V.K.: Tracing-by-linking group signatures. In: Zhou, J., López, J., Deng, R.H., Bao, F. (eds.) ISC 2005. LNCS, vol. 3650, pp. 149–163. Springer, Heidelberg (2005)