1.
Barak, B., Canetti, R., Nielsen, J., Pass, R.: Universally composable protocols with relaxed set-up assumptions. In: FOCS, pp. 186–195. IEEE Computer Society, Los Alamitos (2004)
2.
Bender, A., Katz, J., Morselli, R.: Ring signatures: Stronger definitions, and constructions without random oracles. In: Halevi, S., Rabin, T. (eds.) TCC 2006. LNCS, vol. 3876, pp. 60–79. Springer, Heidelberg (2006)
CrossRef3.
Borisov, N., Goldberg, I., Brewer, E.: Off-the-record communication, or, why not to use PGP. In: WPES, pp. 77–84. ACM, New York (2004)
CrossRef4.
Boyd, C., Mao, W., Paterson, K.G.: Deniable authenticated key establishment for internet protocols. In: Christianson, B., Crispo, B., Malcolm, J.A., Roe, M. (eds.) Security Protocols 2003. LNCS, vol. 3364, pp. 255–271. Springer, Heidelberg (2005)
CrossRef5.
Canetti, R.: Universally composable security: A new paradigm for cryptographic protocols. In: FOCS, pp. 136–145. IEEE Computer Society, Los Alamitos (2001)
6.
Canetti, R.: Universally composable signatures, certification, and authentication. In: Computer Security Foundations Workshop, pp. 219–235. IEEE Computer Society Press, Los Alamitos (2004)
7.
Canetti, R., Dodis, Y., Pass, R., Walfish, S.: Universally composable security with global setup. In: Vadhan, S.P. (ed.) TCC 2007. LNCS, vol. 4392, pp. 61–85. Springer, Heidelberg (2007)
CrossRef8.
Canetti, R., Feige, U., Goldreich, O., Naor, M.: Adaptively secure multi-party computation. In: STOC, pp. 639–648. ACM, New York (1996)
9.
Canetti, R., Fischlin, M.: Universally composable commitments. In: Kilian, J. (ed.) CRYPTO 2001. LNCS, vol. 2139, pp. 19–40. Springer, Heidelberg (2001)
CrossRef10.
Canetti, R., Kilian, J., Petrank, E., Rosen, A.: Black-box concurrent zero-knowledge requires (almost) logarithmically many rounds. SIAM J. Computing 32(1), 1–47 (2002)
MATHCrossRefMathSciNet11.
Canetti, R., Kushilevitz, E., Lindell, Y.: On the limitations of universally composable two-party computation without set-up assumptions. J. Cryptology 19(2), 135–167 (2006)
MATHCrossRefMathSciNet12.
Canetti, R., Rabin, T.: Universal composition with joint state. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 265–281. Springer, Heidelberg (2003)
13.
Di Raimondo, M., Gennaro, R., Krawczyk, H.: Secure off-the-record messaging. In: WPES, pp. 81–89. ACM, New York (2005)
CrossRef14.
Di Raimondo, M., Gennaro, R., Krawczyk, H.: Deniable authentication and key exchange. In: Juels, A., Wright, R., De Capitani di Vimercati, S. (eds.) ACM Conf. Computer and Communications Security, pp. 400–409. ACM, New York (2006)
15.
Diament, T., Lee, H.K., Keromytis, A.D., Yung, M.: The dual receiver cryptosystem and its applications. In: Atluri, V., Pfitzmann, B., McDaniel, P.D. (eds.) ACM Conf. Computer and Communications Security, pp. 330–343. ACM, New York (2004)
16.
Dolev, D., Dwork, C., Naor, M.: Nonmalleable cryptography. SIAM J. Computing 30(2), 391–437 (2000); Preliminary version in STOC 1991
MATHCrossRefMathSciNet17.
Dwork, C., Naor, M.: Zaps and their applications. SIAM J. Computing 36(6), 1513–1543 (2007); Preliminary version in FOCS 2000
MATHCrossRefMathSciNet18.
Dwork, C., Naor, M., Sahai, A.: Concurrent zero-knowledge. J. ACM 51(6), 851–898 (2004); Preliminary version in STOC 1998
MATHCrossRefMathSciNet19.
Dwork, C., Sahai, A.: Concurrent zero-knowledge: Reducing the need for timing constraints. In: Krawczyk, H. (ed.) CRYPTO 1998. LNCS, vol. 1462, pp. 442–457. Springer, Heidelberg (1998); Full version available from the second author’s webpage
20.
Goldwasser, S., Micali, S., Rackoff, C.: The knowledge complexity of interactive proof systems. SIAM J. Computing 18(1), 186–208 (1989)
MATHCrossRefMathSciNet21.
Herzog, J., Liskov, M., Micali, S.: Plaintext awareness via key registration. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 548–564. Springer, Heidelberg (2003)
22.
Jakobsson, M., Sako, K., Impagliazzo, R.: Designated verifier proofs and their applications. In: Maurer, U.M. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 143–154. Springer, Heidelberg (1996)
23.
Jiang, S.: Deniable authentication on the internet. Cryptology ePrint Archive, Report 2007/082 (2007),
http://eprint.iacr.org/
24.
Katz, J.: Efficient and non-malleable proofs of plaintext knowledge and applications. In: Biham, E. (ed.) EUROCRYPT 2003. LNCS, vol. 2656, pp. 211–228. Springer, Heidelberg (2003)
CrossRef25.
Lim, M.-H., Lee, S., Park, Y., Moon, S.: Secure deniable authenticated key establishment for internet protocols. Cryptology ePrint Archive, Report 2007/163 (2007),
http://eprint.iacr.org/
26.
Nielsen, J.B.: Separating random oracle proofs from complexity theoretic proofs: The non-committing encryption case. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 111–126. Springer, Heidelberg (2002)
CrossRef27.
Pass, R.: On deniability in the common reference string and random oracle model. In: Boneh, D. (ed.) CRYPTO 2003. LNCS, vol. 2729, pp. 316–337. Springer, Heidelberg (2003)
28.
Di Raimondo, M., Gennaro, R.: New approaches for deniable authentication. In: Atluri, V., Meadows, C., Juels, A. (eds.) ACM Conf. Computer and Communications Security, pp. 112–121. ACM, New York (2005)
29.
Richardson, R., Kilian, J.: On the concurrent composition of zero-knowledge proofs. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 415–431. Springer, Heidelberg (1999)
30.
Rivest, R., Shamir, A., Tauman, Y.: How to leak a secret. In: Boyd, C. (ed.) ASIACRYPT 2001. LNCS, vol. 2248, pp. 552–565. Springer, Heidelberg (2001)
CrossRef31.
Susilo, W., Mu, Y.: Non-interactive deniable ring authentication. In: Lim, J.-I., Lee, D.-H. (eds.) ICISC 2003. LNCS, vol. 2971, pp. 386–401. Springer, Heidelberg (2004)
32.
Yao, A.C.-C., Yao, F., Zhao, Y., Zhu, B.: Deniable internet key-exchange. Cryptology ePrint Archive, Report 2007/191 (2007),
http://eprint.iacr.org/