Compact Proofs of Retrievability

Abstract

In a proof-of-retrievability system, a data storage center convinces a verifier that he is actually storing all of a client’s data. The central challenge is to build systems that are both efficient and provably secure—that is, it should be possible to extract the client’s data from any prover that passes a verification check. In this paper, we give the first proof-of-retrievability schemes with full proofs of security against arbitrary adversaries in the strongest model, that of Juels and Kaliski. Our first scheme, built from BLS signatures and secure in the random oracle model, has the shortest query and response of any proof-of-retrievability with public verifiability. Our second scheme, which builds elegantly on pseudorandom functions (PRFs) and is secure in the standard model, has the shortest response of any proof-of-retrievability scheme with private verifiability (but a longer query). Both schemes rely on homomorphic properties to aggregate a proof into one small authenticator value.