Sequential Fuzzy Diagnosis for Condition Monitoring of Rolling Bearing Based on Neural Network

  • Huaqing Wang
  • Peng Chen
Conference paper

DOI: 10.1007/978-3-540-87734-9_33

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5264)
Cite this paper as:
Wang H., Chen P. (2008) Sequential Fuzzy Diagnosis for Condition Monitoring of Rolling Bearing Based on Neural Network. In: Sun F., Zhang J., Tan Y., Cao J., Yu W. (eds) Advances in Neural Networks - ISNN 2008. ISNN 2008. Lecture Notes in Computer Science, vol 5264. Springer, Berlin, Heidelberg

Abstract

In the case of fault diagnosis of the plant machinery, diagnostic knowledge for distinguishing faults is ambiguous because definite relationships between symptoms and fault types cannot be easily identified. This paper propose a sequential fuzzy diagnosis method for condition monitoring of a rolling bearing used in a centrifugal blower by the possibility theory and a neural network. The possibility theory is used for solving the ambiguous problem of the fault diagnosis. The neural network is realized with a developed back propagation neural network. As input data for a neural network, the non-dimensional symptom parameters are also defined in time domain. Fault types of a rolling bearing can be effectively, sequentially distinguished on the basis of the possibilities of the normal state and abnormal states at early stage by the fuzzy diagnosis approach. Practical examples of diagnosis are shown in order to verify the efficiency of the method.

Keywords

Sequential fuzzy diagnosis Neural network Possibility theory Condition monitoring Rolling bearing 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Huaqing Wang
    • 1
    • 2
  • Peng Chen
    • 1
  1. 1.Graduate School of BioresourcesMie UniversityMieJapan
  2. 2.School of Mech. & Elec. EngineeringBeijing University of Chemical TechnologyBeijingChina

Personalised recommendations