Complexity of Topological Properties of Regular ω-Languages

  • Victor L. Selivanov
  • Klaus W. Wagner
Conference paper

DOI: 10.1007/978-3-540-85780-8_42

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5257)
Cite this paper as:
Selivanov V.L., Wagner K.W. (2008) Complexity of Topological Properties of Regular ω-Languages. In: Ito M., Toyama M. (eds) Developments in Language Theory. DLT 2008. Lecture Notes in Computer Science, vol 5257. Springer, Berlin, Heidelberg

Abstract

We determine the complexity of topological properties of regular ω-languages (i.e., classes of ω-languages closed under inverse continuous functions). We show that they are typically NL-complete (PSPACE-complete) for the deterministic Muller, Mostowski and Büchi automata (respectively, for the nondeterministic Rabin, Muller, Mostowski and Büchi automata). For the deterministic Rabin and Streett automata and for the nondeterministic Streett automata upper and lower complexity bounds for the topological properties are established.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Victor L. Selivanov
    • 1
  • Klaus W. Wagner
    • 2
  1. 1.Siberian Division of the Russian Academy of SciencesA.P. Ershov Institute of Informatics Systems 
  2. 2.Institut für InformatikJulius-Maximilians-Universität Würzburg 

Personalised recommendations