Complexity of Topological Properties of Regular ω-Languages

* Final gross prices may vary according to local VAT.

Get Access


We determine the complexity of topological properties of regular ω-languages (i.e., classes of ω-languages closed under inverse continuous functions). We show that they are typically NL-complete (PSPACE-complete) for the deterministic Muller, Mostowski and Büchi automata (respectively, for the nondeterministic Rabin, Muller, Mostowski and Büchi automata). For the deterministic Rabin and Streett automata and for the nondeterministic Streett automata upper and lower complexity bounds for the topological properties are established.