Chapter

Algorithmic Number Theory

Volume 5011 of the series Lecture Notes in Computer Science pp 357-370

Tabulation of Cubic Function Fields with Imaginary and Unusual Hessian

  • Pieter RozenhartAffiliated withDepartment of Mathematics and Statistics, University of Calgary
  • , Renate ScheidlerAffiliated withDepartment of Mathematics and Statistics, University of Calgary

* Final gross prices may vary according to local VAT.

Get Access

Abstract

We give a general method for tabulating all cubic function fields over https://static-content.springer.com/image/chp%3A10.1007%2F978-3-540-79456-1_24/MediaObjects/978-3-540-79456-1_24_IEq1_HTML.png whose discriminant D has odd degree, or even degree such that the leading coefficient of − 3D is a non-square in https://static-content.springer.com/image/chp%3A10.1007%2F978-3-540-79456-1_24/MediaObjects/978-3-540-79456-1_24_IEq2_HTML.png , up to a given bound on \(|D| = q^{\deg(D)}\). The main theoretical ingredient is a generalization of a theorem of Davenport and Heilbronn to cubic function fields. We present numerical data for cubic function fields over https://static-content.springer.com/image/chp%3A10.1007%2F978-3-540-79456-1_24/MediaObjects/978-3-540-79456-1_24_IEq4_HTML.png and over https://static-content.springer.com/image/chp%3A10.1007%2F978-3-540-79456-1_24/MediaObjects/978-3-540-79456-1_24_IEq5_HTML.png with \(\deg(D) \leq 7\) and \(\deg(D)\) odd in both cases.