Optimal Higher Order Delaunay Triangulations of Polygons

  • Rodrigo I. Silveira
  • Marc van Kreveld
Conference paper

DOI: 10.1007/978-3-540-78773-0_12

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4957)
Cite this paper as:
Silveira R.I., van Kreveld M. (2008) Optimal Higher Order Delaunay Triangulations of Polygons. In: Laber E.S., Bornstein C., Nogueira L.T., Faria L. (eds) LATIN 2008: Theoretical Informatics. LATIN 2008. Lecture Notes in Computer Science, vol 4957. Springer, Berlin, Heidelberg

Abstract

This paper presents an algorithm to triangulate polygons optimally using order-k Delaunay triangulations, for a number of quality measures. The algorithm uses properties of higher order Delaunay triangulations to improve the O(n3) running time required for normal triangulations to O(k2n logk + knlogn) expected time, where n is the number of vertices of the polygon. An extension to polygons with points inside is also presented, allowing to compute an optimal triangulation of a polygon with h ≥ 1 components inside in O(knlogn) + O(k)h + 2n expected time. Furthermore, through experimental results we show that, in practice, it can be used to triangulate point sets optimally for small values of k. This represents the first practical result on optimization of higher order Delaunay triangulations for k > 1.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Rodrigo I. Silveira
    • 1
  • Marc van Kreveld
    • 1
  1. 1.Department of Information and Computing SciencesUtrecht UniversityTB UtrechtThe Netherlands

Personalised recommendations