Skip to main content

General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis

  • Chapter

Part of the book series: Water Science and Technology Library ((WSTL,volume 63))

All Rainfall-Runoff (R-R) models and, in the broader sense, hydrologic models are simplified characterizations of the real world system. A wide range of R-R models are currently used by researchers and practitioners, however the applications of these models are highly dependent on the purposes for which the modeling is made. Many R-R models are used merely for research purposes in order to enhance the knowledge and understanding about the hydrological processes that govern a real world system. Other types of models are developed and employed as tools for simulation and prediction aiming ultimately to allow decision makers to take the most effective decision for planning and operation while considering the interactions of physical, ecological, economic, and social aspects of a real world system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connel, and J. Rasmussen (1986a): An introduction to European hydrological system – Systeme Hydrologique European, “SHE”, 1: History and Philosophy of a physically-based Distributed modeling system. Journal of Hydrology, 87, 47–59.

    Google Scholar 

  • Abbott, M. B., J. C. Bathurst, J. A. Cunge, P. E. O’Connel, and J. Rasmussen (1986b): An introduction to European hydrological system – Systeme Hydrologique European, “SHE”, 1: Structure of a physically-based Distributed modeling system. Journal of Hydrology, 87, 61–77.

    Article  Google Scholar 

  • Arulampalam, M. S., S. Maskell, N. Gordon, and T. Clapp (2002): A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking. IEEE Trans. Signal Process, 50(2), 174–188.

    Article  Google Scholar 

  • Bergstrom, S. (1995): The HBV model. In: Singh, V. P. (Ed.), Computer Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, CO, pp. 443–476.

    Google Scholar 

  • Beven, K. J. and Kirkby, M. J. (1976): Towards a simple physically based variable contributing model of catchment hydrology. WorkingPaper 154, School of Geography, University of Leeds.

    Google Scholar 

  • Beven, K. J. and Kirkby, M. J. (1979): A physically based, variable contributing area model of basin hydrology, Hydrologic Sciences Bulletin, 24, 1, 3.

    Google Scholar 

  • Beven, K. J., (1985): Chapter 13, Distributed Models. In: Anderson, M. G., and Burt, T. P. (Eds.), Hydrologic Forecasting, Wiley, New York.

    Google Scholar 

  • Beven, K. J., A. Calver, and A. M. Morris (1987): The institute of hydrology distributed model, Institute of hydrology report 98, Wallingford, UK.

    Google Scholar 

  • Beven, K.J. and A.M. Binley (1992): The future of distributed models: model calibration and uncertainty in prediction. Hydrological Processes, 6, 279–298.

    Article  Google Scholar 

  • Beven, K. J. (1993): Prophecy, reality and uncertainty in distributed hydrological modeling. Advanced Water Resource, 16, 41–51.

    Article  Google Scholar 

  • Beven, K. J. (2001): Rainfall-runoff modeling – The primer, Wiley: Chichester, UK.

    Google Scholar 

  • Beven, K. J. and P. C.Young (2003): Comment on “Bayesian recursive parameter estimation for hydrologic models” by Thiemann, M., M. Trosset, H. Gupta, and S. Sorooshian. Water Resource Research, 39(5), COM 1–1, 1–4.

    Google Scholar 

  • Box, G. E. P. and G. C. Tiao (1973): Bayesian Inference in Statistical Analyses. Addison-Wesley, Boston, Mass.

    Google Scholar 

  • Boyle, D. P., H. V. Gupta, and S. Sorooshian (2000): Toward improved calibration of hydrological models: Combining the strengths of manual and automatic methods. Water Resource Research, 36(12), 3663–3674.

    Article  Google Scholar 

  • Brazil, L. E. (1988): Mutilevel calibration strategy for complex hydrologic simulation models, Unpublished Ph.D. Thesis, Colorado State University, Fort Collins.

    Google Scholar 

  • Burnash, R. J. C., R. L. Ferreal, and R. A. McGuire (1973): A generalized streamflow Simulation System: Conceptual Modeling for Digital Computers, U.S. Department of Commerce, National Weather Service and Department of Water Resources.

    Google Scholar 

  • Burnash, R. J. C. (1995): The NWS river Forecast System-Catchment Modeling. In: Singh, V. P. (Ed.), Computer Models of Watershed Hydrology, Water Resources – Publications, Highlands Ranch, CO, pp. 311–366.

    Google Scholar 

  • Calver, A. and W. L.Wood (1995): The institute of hydrology distributed model. Singh, V. P. (Ed.), Computer Models ofWatershed Hydrology, Water Resources – Publications, Highlands Ranch, CO, pp. 595–626.

    Google Scholar 

  • Castelli, F. and D. Entekhabi (2002): Models and Observations: Data Assimilation in Hydrological and Geological Sciences, CNR-MIT Cooperation on Climate Change and Hydrogeological Hazards in the Mediterranean Area.

    Google Scholar 

  • Clark, M. P. and A. G. Slater (2006): Probabilistic quantitative precipitation estimation in complex terrain. Journal of Hydrometeorology, 7(1), 3–22.

    Article  Google Scholar 

  • Clarke, R. T. (1973): A review of mathematical models used in hydrology, with some observations on their calibration and use. Journal of Hydrology, 19, 1–20.

    Article  Google Scholar 

  • Crawford, N. H. and R. K. Linsley (1962): The synthesis of continuous streamflow hydrographs on a digital computer, Technical report 12, Civil Engineering Department, Stanford University.

    Google Scholar 

  • Crawford, N. H. and R. K. Linsley (1966): Digital simulation in hydrology: Stanford Watershed Mode IV, Technical report 39, Civil Engineering Department, Stanford University.

    Google Scholar 

  • Dawdy, D. R. and T. O’Donnell (1965): Mathematical models of catchment behavior. Journal of Hydraulics Division, ASCE, 91 (HY4), 113–137.

    Google Scholar 

  • Duan, Q., S. Sorooshian, and V. K. Gupta (1992): Effective and efficient global optimization for conceptual rainfall-runoff models. Water Resources Research, 28(4), 1015–1031.

    Article  Google Scholar 

  • Duan, Q., S. Sorooshian, and V. K. Gupta (1993): Shuffled complex evolution approach for effective and efficient global optimization. Journal of Optimization Theory and Applications, 76(3), 501–521.

    Article  Google Scholar 

  • Duan, Q. (2003): Global Optimization for Watershed Model Calibration, in Calibration of Watershed Models, Water Science Application Series (6), edited by Duan, Q. et al., AGU, Washington, DC, 89–104.

    Google Scholar 

  • Evensen, G. (1994): Sequential data assimilation with a nonlinear quasi-geostrophic model using Monte Carlo methods to forecast error statistics. Journal of Geophysical Research, 99, 10143–10162.

    Article  Google Scholar 

  • Fleming, G. (1975): Computer Simulation techniques in hydrology. Elsevier, New York.

    Google Scholar 

  • Franchini, M. (1996): Use of a genetic algorithm combined with a local search method for the automatic calibration of conceptual rainfall-runoff models. Hydrologic Science Journal, 41(1), 21–37.

    Google Scholar 

  • Freeze, R. A. and R. L. Harlen (1969): Blueprint for a physically-based digitally simulated hydrological response model. Journal of Hydrology, 9, 237–258.

    Article  Google Scholar 

  • Georgakakos, K. P. (1986a): A generalized stochastic hydrometeorological model for flood and flash flood forecasting, 1. Formulation. Water Resources Research, 22(13), 2083–2095.

    Article  Google Scholar 

  • Georgakakos, K. P. (1986b): A generalized stochastic hydrometeorological model for flood and flash flood forecasting, 1. Case studies. Water Resources Research, 22(13), 2096–2106.

    Article  Google Scholar 

  • Georgakakos, K. P. and G. F. Smith (1990): On improved Hydrologic Forecasting-Results from a WMO real-time forecasting experiment. Journal of Hydrology, 114, 17–45.

    Article  Google Scholar 

  • Georgakakos, K. F. and J. A. Sperflage (1995): Hydrologic Forecast system-HFS: A user’s manual.HRC Tech. Note 1, Hydrologic Research Center, San Diego, CA, 17pp.

    Google Scholar 

  • Goldberg, D. E. (1989): Genetic Algorithms in search, optimization and machine learning, Addison-Wesley publishing company, Reading, MA, p. 412.

    Google Scholar 

  • Grayson, R. B., I. D. Moore, and T. A. McMahon (1992): Physically-based hydrologic modeling. 1. A terrain-based model for investigative purposes. Water Resources Research, 28(10), 2639–2658.

    Article  Google Scholar 

  • Gupta, V. K. and S. Sorooshian (1985): The relationship between data and precision of parameter estimates of hydrologic models. Journal of Hydrology, 81, 57–77.

    Article  Google Scholar 

  • Gupta, V. K., S. Sorooshian, and P. O. Yapo (1998): Towards improved calibration of hydrological models: multiple and noncomensurable measures of information. Water Resources Research, 34, 751–763.

    Article  Google Scholar 

  • Gupta, H. V., S. Sorooshian, T. Hogue, and D. P. Boyle (2003a): Advances in automatic calibration of watershed models, in Calibration of Watershed Models, Water Science Application Series (6), edited by Duan, Q. et al., AGU, Washington, D. C., pp. 113–124.

    Google Scholar 

  • Gupta, H., M. Thiemann, M. Trosset, and S. Sorooshian (2003b): Reply to comment by K. Beven and P. Young on “Bayesian recursive parameter estimation for hydrologic models”. Water Resource Research, 39(5), 1117, doi:10.1029/2002WR001405.

    Google Scholar 

  • Gupta, H. V., K. J. Beven, and T. Wagener (2005): Model calibration and uncertainty estimation. In: Anderson, M. G. and McDonnell, J. (Eds.), Encyclopedia of Hydrologic Sciences, Wiley, Chichester, UK.

    Google Scholar 

  • Hadamard, J. (1990): Psychology of Invention of Mathematical Field, Dover Publications, ISBN 0486201074.

    Google Scholar 

  • Hammersley, J. M. and D. C. Handscomb (1964): Monte Carlo Methods. Chapman and Hall, New York.

    Google Scholar 

  • Hendrickson, J. D., S. Sorooshian, and L. Brazil (1988): Comparison of Newton type and direct search algorithms for calibration of conceptual hydrologic models. Water Resources Research, 24(5), 691–700.

    Article  Google Scholar 

  • Hogue, T. S., S. Sorooshian, H. Gupta, A. Holz, and D. Braatz (2000): A multistep automatic calibration scheme for river forecasting models. AMS Journal of Hydrometeorology, 1, 524–542.

    Article  Google Scholar 

  • Holland, J. H. (1975): Adaption in natural and artificial systems, University of Michigan press, Ann Arbor, USA.

    Google Scholar 

  • Hong, Y., K. Hsu, H. Moradkhani, and S. Sorooshian (2006): Uncertainty quantification of satellite precipitation estimation and Monte Carlo assessment of the error propagation into hydrological response. Water Resources Research, 42, W08421, doi: 10.1029/2005WR004398.

    Article  Google Scholar 

  • Hooke, R. and T. A. Jeeves (1961): Direct search solutions of numerical and statistical problems. Journal of the Association for Computing Machinery, 8(2), 212–229.

    Google Scholar 

  • Ibbitt, R. P. (1970): Systematic parameter fitting for conceptual models of catchment hydrology, Ph.D. Dissertation, University of London, London, England.

    Google Scholar 

  • Jazwinski, A. H. (1970): Stochastic Processes and Filtering Theory, Academic, 376 pp., San Diego, Calif, CA.

    Google Scholar 

  • Johnston, P. R. and D. H. Pilgrim (1976): Parameter optimization for watershed models. Water Resources Research, 12(3), 477–486.

    Article  Google Scholar 

  • Kalman, R. (1960): New approach to linear filtering and prediction problems. Trans., AMSE Journal of Basin Engineering, 82D, 35–45.

    Google Scholar 

  • Kavetski, D., S.W. Franks, and G. Kuczera (2003):, Confronting input uncertainty in environmental modeling , in Calibration of Watershed Models, Water Science Application Series (6), edited by Duan, Q. et al., AGU, Washington, DC, 49–68.

    Google Scholar 

  • Kavetski, D., G. Kuczera, and S.W. Franks (2006), Bayesian analysis of input uncertainty in hydrological modeling: 1. Theory, Water Resour. Res., 42, W03407, doi:10.1029/2005WR004368.

    Article  Google Scholar 

  • Kavetski, D., G. Kuczera, and S. W. Franks (2006), Bayesian analysis of input uncertainty in hydrological modeling: 2. Application, Water Resour. Res., 42, W03408, doi:10.1029/ 2005WR004376.

    Google Scholar 

  • Kirkpatrick, S., C. D. Gelatt, and M. P. Vechi (1983): Optimization by simulated annealing. Science, 220, 671–680.

    Article  Google Scholar 

  • Kitanidis, P. K. and R. L. Bras (1980a): Real-time forecasting with conceptual hydrologic models, 1. Analysis of uncertainty. Water Resources Research, 16(6), 1025–1033.

    Article  Google Scholar 

  • Kitanidis, P. K. and R. L. Bras (1980b): Real-time forecasting with conceptual hydrologic models, 2. Applications and results. Water Resources Research, 16(6), 1034–1044.

    Article  Google Scholar 

  • Kivman, G. A. (2003): Sequential parameter estimation for stochastic systems. Nonlinear Processes in Geophysics, 10, 253–259.

    Google Scholar 

  • Koren, V., M. Smith, and Q. Duan (2001): Use of a priori parameter estimates in the derivation of spatially consistent parameter sets of rainfall-runoff models, Calibration of Watershed Models, Water Science and Applications Series edited by Duan, Q. et al., AGU.

    Google Scholar 

  • Kuczera, G. and E. Parent (1998): Monte Carlo assessment of parameter uncertainty in conceptual catchment models. The Metropolis algorithm, Journal of Hydrology, 211, 69–85.

    Article  Google Scholar 

  • Masri, S. F., G. A. Bekey, and F. B. Safford (1980): A global optimization algorithm using adaptive random search. Applied mathematics and Computation, 7, 353–375.

    Article  Google Scholar 

  • Misirli, F., H. V. Gupta, S. Sorooshian, and M. Thiemann (2003): Bayesian recursive estimation of parameter and output uncertainty for watershed models, Calibration of Watershed Models, Water Science Application Series (6), edited by Duan, Q. et al., AGU, Washington, DC, pp. 113–124.

    Google Scholar 

  • Moradkhani, H., K. Hsu, H. V. Gupta, and S. Sorooshian (2004): Improved streamflow forecasting using self-organizing radial basis function artificial neural network. Journal of Hydrology, 295(1–4), 246–262.

    Article  Google Scholar 

  • Moradkhani, H. (2004): Improved uncertainty assessment of hydrologic models using data assimilation and stochastic filtering, Ph.D. Dissertation, University of California, Irvine.

    Google Scholar 

  • Moradkhani, H., S. Sorooshian, H. V. Gupta, and P. R. Houser (2005a): Dual state-parameter estimation of hydrological models using ensemble Kalman filter. Advanced Water Resource, 28(2), 135–147.

    Article  Google Scholar 

  • Moradkhani, H., K.-L. Hsu, H. Gupta, and S. Sorooshian (2005b): Uncertainty assessment of hydrologic model states and parameters: sequential data assimilation using the particle filter. Water Resource Research, 41, W05012, doi:10.1029/2004WR003604.

    Google Scholar 

  • Moradkhani, H., K. Hsu, Y. Hong, and S. Sorooshian (2006): Investigating the impact of remotely sensed precipitation and hydrologic model uncertainties on the ensemble streamflow forecasting. Geophysical Research Letters, 33, L12107, doi:10.1029/2006GL026855.

    Article  Google Scholar 

  • Nash, J. E. and J. V. Sutcliffe (1970): River flow forecasting through conceptual models, Part I- a discussion of principles. Journal of Hydrology, 10(3), 282–290.

    Article  Google Scholar 

  • Nelder, J. A. and R. Mead (1965): A simplex method for function minimization. Computer Journal, 7, 308–313.

    Google Scholar 

  • Pickup, G. (1977): Testing the efficiency of algorithms and strategies for automatic calibration of rainfall-runoff models. Hydrological Science Bulletin, 12(2) 257–274.

    Article  Google Scholar 

  • Pham, D. T. (2001): Stochastic methods for sequential data assimilation in strongly nonlinear systems. Monthly Weather Review, 129, 1194–1207.

    Article  Google Scholar 

  • Rajaram, H. and K. P. Georgakakos (1989): Recursive parameter estimation of hydrological models. Water Resources Research, 25(2), 281–294

    Article  Google Scholar 

  • Refsgaard, J. C. (1996): Terminology, modeling Protocol and classification of hydrological model codes. In: Abbott, M. B. and Refsgaard, J. C. (Eds.), Distributed Hydrological Modeling,Water Science and Technology Library.

    Google Scholar 

  • Refsgaard, J. C. and B. Storm (1995): MIKE SHE. In: Singh, V. J. (Ed.) Computer Models in Watershed Hydrology, Water Resources Publications

    Google Scholar 

  • Rosenbrock, H. H. (1960): An automatic method for finding a greatest or least value of a function. Computer Journal, 3, 175–184.

    Article  Google Scholar 

  • Sambridge, M. and K. Mosegaard (2002): Monte Carlo methods in geophysical inverse problems. Reviews of Geophysics, 40(3), 1009, doi:10.1029/2000RG000089.

    Google Scholar 

  • Singh, V. P. (1995): Computer Models of Watershed Hydrology. Water Resources Publications, 1130pp.

    Google Scholar 

  • Singh, V. P. and D. K. Frevert (2002a): Mathematical Models of Large Watershed Hydrology. Water Resources Publications, 891pp.

    Google Scholar 

  • Singh, V. P. and D. K. Frevert (2002b): Mathematical Models of Large Watershed Hydrology and Applications. Water Resources Publications, 950pp.

    Google Scholar 

  • Smith, M. B., D. Seo, V. I. Koren, S. M. Reed, Z. Zhang, Q. Duan, F. Moreda, and S. Cong (2004): The distributed model intercomparison project (DMIP): motivation and experiment design. Journal of Hydrology (Amsterdam), 298, 4–26 ER.

    Article  Google Scholar 

  • Smith, E. E., D. C. Goodrich, D. A. Woolhiser, and C. L. Unkrich (1995): KINEROS: A KINematic Runoff and EROSion Model. In: Singh, V. P. (Ed.), Computer Models ofWatershed Hydrology, Water Resources Publications, Highlands Ranch, CO, pp. 697–732.

    Google Scholar 

  • Sorooshian, S. and J. A. Dracup (1980): Stochastic parameter estimation procedures for hydrologic rainfall-runoff models: correlated and heteroscedastic error cases. Water Resource Research, 16(2), 430–442.

    Article  Google Scholar 

  • Sorooshian, S., Q. Duan, and V. K. Gupta (1993): Calibration of rainfall-runoff models: application of global optimization to the soil moisture accounting model. Water Resource Research, 29(4):, 1185–1194.

    Article  Google Scholar 

  • Sorooshian S. and V. K. Gupta (1995): Model calibration. In: Singh, V. P. (Ed.), Computer Models of Watershed Hydrology, Water Resources Publications, Highlands Ranch, CO, pp. 23–67.

    Google Scholar 

  • Thiemann, M., M. Trosset, H. Gupta, and S. Sorooshian (2001): Bayesian recursive parameter estimation for hydrological models. Water Resource Research, 37(10), 2521–2535.

    Article  Google Scholar 

  • Todini, E., A. Szollosi-Nagy, and E. F. Wood (1976): Adaptive state-parameter estimation algorithm for real time hydrologic forecasting: a case study, IISA/WMO workshop on the recent developments in real time forecasting/ control of water resources systems; Laxemburg (Austeria).

    Google Scholar 

  • Todini, E. (1978): Mutually Interactive State-Parameter (MISP) estimation, Applications of Kalman filters to hydrology, hydraulics and water resources, Proceedings of AGU Chapman Conference, Edited by Chao-Lin Chiu.

    Google Scholar 

  • P. Mantovan and E. Todini (2006), Hydrological forecasting uncertainty assessment: incoherence of the GLUE methodology, J. Hydrol. 330 (2006) (1–2), pp. 368–381.

    Article  Google Scholar 

  • Vrugt, J. A., H. V. Gupta, W. Bouten, and S. Sorooshian (2003a):, A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters. Water Resources Research, 39(8), 1201, doi:10.1029/2002WR001642.

    Article  Google Scholar 

  • Wheater, H. S., A. J. Jakeman, and K. J. Beven (1993): Progress and directions in rainfall-runoff modeling. In: Jakeman, A. J., Beck, M. B., and McAleer, M. J. (Eds.), Modleing change in environmental systems. John Wiley & Sons, Chichester, UK, pp. 101–132.

    Google Scholar 

  • WMO (1992): Simulated real-time intercomparison of hydrological models, OHR-38. WMO No. 779.

    Google Scholar 

  • Zhao, R. J., Y. L. Zhuang, L. R. Fang, X. R. Liu, and Q. S. Zhang (1980): The Zinanjiang Model, Hydrological Forecasting Proceedings Oxford Symposium, IAHS 129, pp. 351–356.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer Science+Business Media B.V.

About this chapter

Cite this chapter

Moradkhani, H., Sorooshian, S. (2009). General Review of Rainfall-Runoff Modeling: Model Calibration, Data Assimilation, and Uncertainty Analysis. In: Sorooshian, S., Hsu, KL., Coppola, E., Tomassetti, B., Verdecchia, M., Visconti, G. (eds) Hydrological Modelling and the Water Cycle. Water Science and Technology Library, vol 63. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77843-1_1

Download citation

Publish with us

Policies and ethics