Skip to main content

Selection and Monitoring of Navigation Modes for an Autonomous Rover

  • Chapter
Experimental Robotics

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 39))

Introduction

Considering the wide spectrum of situations that it may encounter, a robot navigating autonomously in outdoor environments needs to be endowed with several operating modes, for robustness and efficiency reasons. Indeed, the terrain it has to traverse may be composed of flat or rough areas, low cohesive soils such as sand dunes, concrete road etc... Traversing these various kinds of environment calls for different navigation and/or locomotion functionalities, especially if the robot is endowed with different locomotion abilities, such as the robots WorkPartner, Hylos [4], Nomad or the Marsokhod rovers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arnaud, E., Memin, E., Cernuschi-Frias, B.: Conditional filters for image sequence based tracking - application to point tracking. IEEE Transactions on Image Processing 14(1), 63–79 (2005)

    Article  MathSciNet  Google Scholar 

  2. Dearden, R., Clancy, D.: Particle filters for real-time fault detection in planetary rovers. In: Proceedings of the 12th International Workshop on Principles of Diagnosis (2002)

    Google Scholar 

  3. Funiak, S., Williams, B.: Multi-modal particle filtering for hybrid systems with autonomous mode transitions. In: Proceedings of the 13th International Workshop on Principles of Diagnosis (2003)

    Google Scholar 

  4. Grand, Ch., BenAmar, F., Bidaud, Ph.: Kinematic analysis and stability optimisation of a reconfigurable legged-wheeled mini-rover. In: SPIE 2002. Unmanned ground-vehicle technology IV (2002)

    Google Scholar 

  5. Lacroix, S., Mallet, A., Bonnafous, D., Bauzil, G., Fleury, S., Herrb, M., Chatila, R.: Autonomous rover navigation on unknown terrains: Functions and integration. International Journal of Robotics Research (2002)

    Google Scholar 

  6. Minguez, J., Osuna, J., Montano, L.: A ”divide and conquer” strategy based on situations to achieve reactive collision avoidance in troublesome scenarios. In: IEEE International Conference on Robotics and Automation (2004)

    Google Scholar 

  7. Peynot, T., Lacroix, S.: Enhanced locomotion control for a planetary rover. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2003)

    Google Scholar 

  8. Peynot, T., Lacroix, S.: A probabilistic framework to monitor a multi-mode outdoor robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2005)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Oussama Khatib Vijay Kumar Daniela Rus

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Peynot, T., Lacroix, S. (2008). Selection and Monitoring of Navigation Modes for an Autonomous Rover. In: Khatib, O., Kumar, V., Rus, D. (eds) Experimental Robotics. Springer Tracts in Advanced Robotics, vol 39. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-77457-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-77457-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-77456-3

  • Online ISBN: 978-3-540-77457-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics