An Ontology-Driven Annotation of Data Tables

  • Gaëlle Hignette
  • Patrice Buche
  • Juliette Dibie-Barthélemy
  • Ollivier Haemmerlé
Conference paper

DOI: 10.1007/978-3-540-77010-7_4

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4832)
Cite this paper as:
Hignette G., Buche P., Dibie-Barthélemy J., Haemmerlé O. (2007) An Ontology-Driven Annotation of Data Tables. In: Weske M., Hacid MS., Godart C. (eds) Web Information Systems Engineering – WISE 2007 Workshops. WISE 2007. Lecture Notes in Computer Science, vol 4832. Springer, Berlin, Heidelberg

Abstract

This paper deals with the integration of data extracted from the web into an existing data warehouse indexed by a domain ontology. We are specially interested in data tables extracted from scientific publications found on the web. We propose a way to annotate data tables from the web according to a given domain ontology. In this paper we present the different steps of our annotation process. The columns of a web data table are first segregated according to whether they represent numeric or symbolic data. Then, we annotate the numeric (resp.symbolic) columns with their corresponding numeric (resp. symbolic) type found in the ontology. Our approach combines different evidences from the column contents and from the column title to find the best corresponding type in the ontology. The relations represented by the web data table are recognized using both the table title and the types of the columns that were previously annotated. We give experimental results of our annotation process, our application domain being food microbiology.

Keywords

ontology-driven data integration semantic annotation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Gaëlle Hignette
    • 1
  • Patrice Buche
    • 1
  • Juliette Dibie-Barthélemy
    • 1
  • Ollivier Haemmerlé
    • 2
  1. 1.UMR AgroParisTech/INRA MIA - INRA Unité Mét@risk, AgroParisTech, 16 rue Claude Bernard, F-75231 Paris Cedex 5France
  2. 2.IRIT - Université Toulouse le Mirail, Dpt. Mathématiques-Informatique, 5 allées Antonio Machado, F-31058 Toulouse Cedex 

Personalised recommendations