Skip to main content

Tracking Environmental Isoclines Using Polygonal Formations of Submersible Autonomous Vehicles

  • Chapter

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 42))

Summary

Knowledge of iso-contours of the underwater terrain can be used to reconstruct it using interpolation. Identifying a set of isoclines can be more efficient and less time-intensive than sweeping a large area. In this paper, we propose a system where a small number of agile underwater vehicles cooperatively maintain a polygonal formation on a plane above the terrain and use field values measured by the individual robots to locally reconstruct the field using interpolation schemes. The formation then tracks a desired iso-contour of the field by tracking the corresponding curve on the reconstructed field.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   189.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   239.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jaeger, H., Christaller, T.: Dual Dynamics: Designing Behaviour Systems for Autonomous Robots. Artificial Life and Robotics 2 (1998)

    Google Scholar 

  2. http://users.rsise.anu.edu.au/~serafina/

  3. Yoerger, D., et al.: High Resolution Mapping of a Fast Spreading Mid Ocean Ridge with the Autonomous Benthic Explorer. In: Proc. of the 11th Symp. on Unmanned Submersible Technology, Durham, NH, USA (1999)

    Google Scholar 

  4. Rendas, M.J., Folcher, J.-P., Lourtie, I.M.: Contour Tracking with Video and Altmeter. Project SUMARE Deliverable 4.1 (2002)

    Google Scholar 

  5. Reet, A.V.: Contour Tracking for the REMUS Autonomous Underwater Vehicle. Master’s thesis, Dept. of Mech. Eng., US Naval Postgraduate School (2005)

    Google Scholar 

  6. Kemp, M., Bertozzi, A.L., Marthaler, D.: Multi-UUV Perimeter Surveillance. IEEE/OES Conf. on Autonomous Underwater Vehicles (2004)

    Google Scholar 

  7. Bennett, A.B., Leonard, J.J., Bellingham, J.G.: Bottom Following for Survey Class Autonomous Underwater Vehicles. In: Proc. Int. Symp. on Unmanned Untethered Submersible Technology, New Hampshire (1995)

    Google Scholar 

  8. Zhang, F., Leonard, N.E.: Generating Contour Plots using Multiple Sensor Platforms. In: Proc. IEEE Swarm Intelligence Symposium (2005)

    Google Scholar 

  9. Ogren, P., Fiorelli, E., Leonard, N.E.: Formations with a Mission: Stable Coordination of Vehicle Group Maneuvres. In: Proc. 15th Int. Symp. on Math. Theory of Networks and Systems (2002)

    Google Scholar 

  10. Schill, F., Zimmer, U.R., Trumpf, J.: Visible Spectrum Optical Communication and Distance Sensing for Underwater Applications. In: Proc. of ACRA, Canberra, Australia (2004)

    Google Scholar 

  11. Schill, F., Zimmer, U.R., Trumpf, J.: Towards Optimal TDMA Scheduling for Robotic Swarm Communication. In: Proc. of TAROS, London (2005)

    Google Scholar 

  12. Schill, F., Zimmer, U.R., Trumpf.: Effective Communication in Schools of Submersibles. In: Proc. of OCEANS, Singapore (2006)

    Google Scholar 

  13. Kottege, N., Zimmer, U.R.: MLS-based, Distributed Bearing, Range, and Posture Estimation for Schools of Submersibles. In: Proc. of 10th Int. Symp. on Experimental Robotics, Rio de Janeiro (2006)

    Google Scholar 

  14. Hormann, K., Spinello, S., Schroder, P.: -Continuous Terrain Reconstruction from Sparse Contours, Munich, Germany. 8th Int. Fall Workshop on Vision and Visualization (2003)

    Google Scholar 

  15. Egerstedt, M., Hu, X.: Formation Constrained Multi-Agent Control. IEEE Trans. on Robotics and Automation 17(6) (2001)

    Google Scholar 

  16. Egerstedt, M., Hu, X., Stosky, A.: Control of Mobile Platforms Using a Virtual Vehicle Approach. IEEE Trans. on Automatic Control 46(11) (2001)

    Google Scholar 

  17. Marshall, J.A., Lin, Z., Brouke, M.E., Francis, B.A.: A Pursuit Strategy for Wheeled-Vehicle Formations. In: Proc. of 42nd IEEE Conf. on Decision and Control, Hawaii (2003)

    Google Scholar 

  18. Sukumar, N., Malsch, E.A.: Recent Advances in the Construction of Polygonal Finite Element Interpolants. Archives of Computational Methods in Engineering 13(1) (2006)

    Google Scholar 

  19. Floater, M.S., Hormann, K., Kos, G.: A General Construction of Barycentric Coordinates over Convex Polygons. Advances in Computational Mathematics 24(1) (2006)

    Google Scholar 

  20. Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized Barycentric Coordinates on Irregular Polygons. Journal of Graphics Tools 7(1) (2002)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Christian Laugier Roland Siegwart

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kalantar, S., Zimmer, U. (2008). Tracking Environmental Isoclines Using Polygonal Formations of Submersible Autonomous Vehicles. In: Laugier, C., Siegwart, R. (eds) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol 42. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-75404-6_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-75404-6_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-75403-9

  • Online ISBN: 978-3-540-75404-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics