Bridging the Sense-Reasoning Gap Using DyKnow: A Knowledge Processing Middleware Framework

Purchase on Springer.com

$29.95 / €24.95 / £19.95*

* Final gross prices may vary according to local VAT.

Get Access

Abstract

To achieve complex missions an autonomous unmanned aerial vehicle (UAV) operating in dynamic environments must have and maintain situational awareness. This can be achieved by continually gathering information from many sources, selecting the relevant information for current tasks, and deriving models about the environment and the UAV itself. It is often the case models suitable for traditional control, are not sufficient for deliberation. The need for more abstract models creates a sense-reasoning gap. This paper presents DyKnow, a knowledge processing middleware framework, and shows how it supports bridging the gap in a concrete UAV traffic monitoring application. In the example, sequences of color and thermal images are used to construct and maintain qualitative object structures. They model the parts of the environment necessary to recognize traffic behavior of tracked vehicles in real-time. The system has been implemented and tested in simulation and on data collected during flight tests.