Skip to main content

Real Computational Universality: The Word Problem for a Class of Groups with Infinite Presentation

(Extended Abstract)

  • Conference paper
Mathematical Foundations of Computer Science 2007 (MFCS 2007)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4708))

  • 1142 Accesses

Abstract

The word problem for discrete groups is well-known to be undecidable by a Turing Machine; more precisely, it is reducible both to and from and thus equivalent to the discrete Halting Problem.

The present work introduces and studies a real extension of the word problem for a certain class of groups which are presented as quotient groups of a free group and a normal subgroup. As main difference with discrete groups, these groups may be generated by uncountably many generators with index running over certain sets of real numbers. This includes a variety of groups which are not captured by the finite framework of the classical word problem.

Our contribution extends computational group theory from the discrete to the Blum-Shub-Smale (BSS) model of real number computation. It provides a step towards applying BSS theory, in addition to semi-algebraic geometry, also to further areas of mathematics.

The main result establishes the word problem for such groups to be not only semi-decidable (and thus reducible to) but also reducible from the Halting Problem for such machines. It thus gives the first non-trivial example of a problem complete, that is, computationally universal for this model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Blum, L., Cucker, F., Shub, M., Smale, S.: Complexity and Real Computation. Springer, Heidelberg (1998)

    Google Scholar 

  2. Blum, L., Shub, M., Smale, S.: On a Theory of Computation and Complexity over the Real Numbers: \(\mathcal{NP}\)-Completeness, Recursive Functions, and Universal Machines. Bulletin of the American Mathematical Society (AMS Bulletin), vol. 21, pp. 1–46 (1989)

    Google Scholar 

  3. Boone, W.W.: The word problem. Proc. Nat. Acad. Sci. 44, 265–269 (1958)

    Article  MathSciNet  Google Scholar 

  4. Bourgade, M.: Séparations et transferts dans la hiérarchie polynomiale des groupes abéliens infinis. Mathematical Logic Quarterly 47 (4), 493–502 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cannon, J.W., Conner, G.R.: The combinatorial structure of the Hawaiian earring group. Topology and its Applications 106, 225–271 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  6. Cucker, F.: The arithmetical hierarchy over the reals. Journal of Logic and Computation 2(3), 375–395 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  7. Derksen, H., Jeandel, E., Koiran, P.: Quantum automata and algebraic groups. J. Symbolic Computation 39, 357–371 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  8. Finkelstein, L., Kantor, W.M.: Groups and Computation. The DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS, vol. 11. AMS, Providence, RI (1991)

    Google Scholar 

  9. Finkelstein, L., Kantor, W.M. (eds.): Groups and Computation II. The DIMACS Series in Discrete Mathematics and Theoretical Computer Science, AMS, vol. 28. AMS, Providence, RI (1995)

    Google Scholar 

  10. Gassner, C.: The \(\mathcal{P}=\mathcal{DNP}\) problem for infinite abelian groups. Journal of Complexity 17, 574–583 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  11. Holt, D.F., Eick, B., O’Brien, E.: Handbook of Computational Group Theory. Chapman&Hall/CRC (2005)

    Google Scholar 

  12. Kettner, L., Mehlhorn, K., Pion, S., Schirra, S., Yap, C.K.: Classroom Examples of Robustness Problems in Geometric Computations. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 702–713. Springer, Heidelberg (2004)

    Google Scholar 

  13. Lyndon, R.C., Schupp, P.E.: Combinatorial Group Theory. Springer, Heidelberg (1977)

    MATH  Google Scholar 

  14. Matiyasevich, Y.: Enumerable sets are Diophantine. Soviet Mathematics. Doklady 11(2), 354–358 (1970)

    MATH  Google Scholar 

  15. Meer, K., Ziegler, M.: An Explicit Solution to Post’s Problem over the Reals. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 456–467. Springer, Heidelberg (2005) full version to appear in the journal of complexity, see also arXiv:cs.LO/0603071

    Chapter  Google Scholar 

  16. Meer, K., Ziegler, M.: Uncomputability Below the Real Halting Problem. In: Beckmann, A., Berger, U., Löwe, B., Tucker, J.V. (eds.) CiE 2006. LNCS, vol. 3988, pp. 368–377. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Novikov, P.S.: On the algorithmic unsolvability of the word problem in group theory. Trudy Mat. Inst. Steklov 44, 1–143 (1959)

    Google Scholar 

  18. Prunescu, M.: A model-theoretic proof for \(\mathcal{P} \neq \mathcal{NP}\) over all infinite abelian groups. The Journal of Symbolic Logic 67, 235–238 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  19. Rotman, J.J.: An Introduction to the Theory of Groups 4th Edition. Springer, Heidelberg (1995)

    Google Scholar 

  20. Tucker, J.V.: Computability and the algebra of fields. J. Symbolic Logic 45, 103–120 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  21. Turing, A.M.: On Computable Numbers, with an Application to the Entscheidungsproblem. Proc. London Math. Soc. 42(2), 230–265 (1936)

    MATH  Google Scholar 

  22. Weihrauch, K.: Computable Analysis. Springer, Heidelberg (2000)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Luděk Kučera Antonín Kučera

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Meer, K., Ziegler, M. (2007). Real Computational Universality: The Word Problem for a Class of Groups with Infinite Presentation. In: Kučera, L., Kučera, A. (eds) Mathematical Foundations of Computer Science 2007. MFCS 2007. Lecture Notes in Computer Science, vol 4708. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74456-6_64

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74456-6_64

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74455-9

  • Online ISBN: 978-3-540-74456-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics