Skip to main content

Part of the book series: Medical Radiology ((Med Radiol Radiat Oncol))

Abstract

Since the first description of angiogenesis and the discovery of its crucial role in tumor growth, extensive efforts have been made to develop antiangiogenic drugs. Some targeted therapies have been established as the first-line therapy in certain tumor types. However, the pathophysiological principles are not fully understood, and little is known about the interaction of antiangiogenic drugs in combination with other classical antitumoral therapies like chemotherapy or radiation. A combination of all three strategies represents a very powerful tool to treat cancer aggressively, but also increases the risk of side effects. To understand the rationale of these combinational therapies, it is critically important to understand the angionesis and pathophysiology of antiangiogenic drugs on the one hand and the effects of radiation and chemotherapy on the other.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abramsson A, Berlin O et al. (2002) Analysis of mural cell recruitment to tumor vessels. Circulation 105(1): 112–117

    Article  PubMed  CAS  Google Scholar 

  • Andratschke NH, Nieder C et al. (2005) Potential role of growth factors in diminishing radiation therapy neural tissue injury. Semin Oncol 32(2 Suppl 3): S67–70

    Article  PubMed  CAS  Google Scholar 

  • Asahara T, Murohara T et al. (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302): 964–967

    Article  PubMed  CAS  Google Scholar 

  • Baluk P, Hashizume H et al. (2005) Cellular abnormalities of blood vessels as targets in cancer. Curr Opin Genet Dev 15(1): 102–111

    Article  PubMed  CAS  Google Scholar 

  • Batchelor T, Sorensen A et al. (2008) A multidisciplinary phase II study of AZD2171 (cediranib), an oral Pan-VEGF receptor tyrosine kinase inhibitor, in patients with recurrent glioblastoma. Proc Am Assoc Cancer Res (AACR) 2008 Annual Meeting. Abstract LB-247

    Google Scholar 

  • Batchelor TT, Sorensen AG et al. (2007) AZD2171, a pan-VEGF receptor tyrosine kinase inhibitor, normalizes tumor vasculature and alleviates edema in glioblastoma patients. Cancer Cell 11(1): 83–95

    Article  PubMed  CAS  Google Scholar 

  • Bonner J A, Harari PM, et al. (2006) Radiotherapy plus cetuximab for squamous-cell carcinoma of the head and neck. N Engl J Med 354(6): 567–578

    Article  PubMed  CAS  Google Scholar 

  • Bourhis J, Rivera F et al. (2006) Phase I/II study of cetuximab in combination with cisplatin or carboplatin and fluorouracil in patients with recurrent or metastatic squamous cell carcinoma of the head and neck. J Clin Oncol 24(18): 2866–2672

    Article  PubMed  CAS  Google Scholar 

  • Brown JM (2002) Tumor microenvironment and the response to anticancer therapy. Cancer Biol Ther 1(5): 453–458

    PubMed  Google Scholar 

  • Burtness B, Goldwasser MA et al. (2005) Phase III randomized trial of cisplatin plus placebo compared with cisplatin plus cetuximab in metastatic/recurrent head and neck cancer: an Eastern Cooperative Oncology Group study. J Clin Oncol 23(34): 8646–8654

    Article  PubMed  Google Scholar 

  • Camphausen K, Menard C (2002) Angiogenesis inhibitors and radiotherapy of primary tumours. Expert Opin Biol Ther 2(5): 477–481

    Article  PubMed  CAS  Google Scholar 

  • Canady C (2005) Metronomic chemo/Avastin may be effective in ovarian cancer. Oncol News Int 14:8–22

    Google Scholar 

  • Ciardiello F, Tortora G (2008) EGFR antagonists in cancer treatment. N Engl J Med 358(11): 1160–1174

    Article  PubMed  CAS  Google Scholar 

  • Cohen MH, Gootenberg J et al. (2007). FDA drug approval summary: bevacizumab (Avastin) plus Carboplatin and Paclitaxel as first-line treatment of advanced/metastatic recurrent nonsquamous non-small cell lung cancer. Oncologist 12(6): 713–718

    Article  PubMed  CAS  Google Scholar 

  • Colleoni M, Rocca A et al. (2002) Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 13(1): 73–80

    Article  PubMed  CAS  Google Scholar 

  • Crane CH, Ellis LM et al. (2006) Phase I trial evaluating the safety of bevacizumab with concurrent radiotherapy and capecitabine in locally advanced pancreatic cancer. J Clin Oncol 24(7): 1145–1151

    Article  PubMed  CAS  Google Scholar 

  • Czito BG, Bendell JC et al. (2007) Bevacizumab, oxaliplatin, and capecitabine with radiation therapy in rectal cancer: Phase I trial results. Int J Radiat Oncol Biol Phys 68(2): 472–478

    PubMed  CAS  Google Scholar 

  • Dörr W, Trott KR (2000) Strahlenbiologie der Normalgewebe. München, Urban und Vogel

    Google Scholar 

  • Drevs J, Konerding MA et al. (2004) The VEGF receptor tyrosine kinase inhibitor, ZD6474, inhibits angiogenesis and affects microvascular architecture within an orthotopically implanted renal cell carcinoma. Angiogenesis 7(4): 347–354

    Article  PubMed  CAS  Google Scholar 

  • Van Cutsem E, D‘haens G et al. (2008) KRAS status and efficacy in the first-line treatment of patients with metastatic colorectal cancer (mCRC) treated with FOLFIRI with or without cetuximab: The CRYSTAL experience. J Clin Oncol 26 suppl; abstract 2

    Google Scholar 

  • Folkman J (1971) Tumor angiogenesis: therapeutic implications. N Engl J Med 285(21): 1182–1186

    PubMed  CAS  Google Scholar 

  • Folkman J, Camphausen K (2001) Cancer. What does radiotherapy do to endothelial cells? Science 293(5528): 227–228

    Article  PubMed  CAS  Google Scholar 

  • Fukumura D, Gohongi T et al. (2001) Predominant role of endothelial nitric oxide synthase in vascular endothelial growth factor-induced angiogenesis and vascular permeability. Proc Natl Acad Sci USA 98(5): 2604–2609

    Article  PubMed  CAS  Google Scholar 

  • Geng L, Donnelly E et al. (2001) Inhibition of vascular endothelial growth factor receptor signaling leads to reversal of tumor resistance to radiotherapy. Cancer Res 61(6): 2413–2439

    PubMed  CAS  Google Scholar 

  • Gorski DH, Beckett MA et al. (1999) Blockage of the vascular endothelial growth factor stress response increases the antitumor effects of ionizing radiation. Cancer Res 59(14): 3374–3378

    PubMed  CAS  Google Scholar 

  • Griffin RJ, Williams BW et al. (2002) Simultaneous inhibition of the receptor kinase activity of vascular endothelial, fibroblast, and platelet-derived growth factors suppresses tumor growth and enhances tumor radiation response. Cancer Res 62(6): 1702–1706

    PubMed  CAS  Google Scholar 

  • Hess C, Vuong V et al. (2001) Effect of VEGF receptor inhibitor PTK787/ZK222584 [correction of ZK222548] combined with ionizing radiation on endothelial cells and tumour growth. Br J Cancer 85(12): 2010–2016

    Article  PubMed  CAS  Google Scholar 

  • Huang SM, Li J et al. (2002) Modulation of radiation response and tumor-induced angiogenesis after epidermal growth factor receptor inhibition by ZD1839 (Iressa). Cancer Res 62(15): 4300–4306

    PubMed  CAS  Google Scholar 

  • Hurwitz H, Fehrenbacher L et al. (2004) Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N Engl J Med 350(23): 2335–2342

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2001) Normalizing tumor vasculature with anti-angiogenic therapy: a new paradigm for combination therapy. Nat Med 7(9): 987–989

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6): 685–963

    Article  PubMed  CAS  Google Scholar 

  • Jain RK (2005) Normalization of tumor vasculature: an emerging concept in antiangiogenic therapy. Science 307(5706): 58–62

    Article  PubMed  CAS  Google Scholar 

  • Kerbel RS, Kamen BA (2004) The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4(6): 423–436

    Article  PubMed  CAS  Google Scholar 

  • Kerbel (2008) Tumor angiogenesis. N Engl J Med 358:2039–49

    Article  PubMed  CAS  Google Scholar 

  • Kieran MW, Turner CD et al. (2005) A feasibility trial of antiangiogenic (metronomic) chemotherapy in pediatric patients with recurrent or progressive cancer. J Pediatr Hematol Oncol 27(11): 573–581

    Article  PubMed  Google Scholar 

  • Klement G, Baruchel S et al. (2000) Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105(8): R15–24

    Article  PubMed  CAS  Google Scholar 

  • Koch CJ, Evans SM (2003) Non-invasive PET and SPECT imaging of tissue hypoxia using isotopically labeled 2-nitroimidazoles. Adv Exp Med Biol 510: 285–292

    PubMed  CAS  Google Scholar 

  • Kozin SV, Boucher Y et al. (2001) Vascular endothelial growth factor receptor-2-blocking antibody potentiates radiation-induced long-term control of human tumor xenografts. Cancer Res 61(1): 39–44

    PubMed  CAS  Google Scholar 

  • Lee CG, Heijn M et al. (2000) Anti-vascular endothelial growth factor treatment augments tumor radiation response under normoxic or hypoxic conditions. Cancer Res 60(19): 5565–5570

    PubMed  CAS  Google Scholar 

  • Leung DW, Cachianes G et al. (1989) Vascular endothelial growth factor is a secreted angiogenic mitogen. Science 246(4935): 1306–1309

    Article  PubMed  CAS  Google Scholar 

  • Miller K, Wang M et al. (2007) Paclitaxel plus bevacizumab versus paclitaxel alone for metastatic breast cancer. N Engl J Med 357(26): 2666–2676

    Article  PubMed  CAS  Google Scholar 

  • Morikawa S, Baluk P et al. (2002) Abnormalities in pericytes on blood vessels and endothelial sprouts in tumors. Am J Pathol 160(3): 985–1000

    PubMed  Google Scholar 

  • Moyal EC, Laprie A et al. (2007) Phase I trial of tipifarnib (R115777) concurrent with radiotherapy in patients with glioblastoma multiforme. Int J Radiat Oncol Biol Phys 68(5): 1396–1401

    PubMed  Google Scholar 

  • Moyal EC-J (2008) Optimizing antiangiogenic strategies: combining with radiotherapy. Targeted Oncol 3(1):51

    Article  Google Scholar 

  • Pietras K, Hanahan D (2005) A multitargeted, metronomic, and maximum-tolerated dose chemo-switch regimen is antiangiogenic, producing objective responses and survival benefit in a mouse model of cancer. J Clin Oncol 23(5): 939–952

    Article  PubMed  CAS  Google Scholar 

  • Rischin D, Hicks RJ et al. (2006) Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. J Clin Oncol 24(13): 2098–2104

    Article  PubMed  Google Scholar 

  • Rischke HC, Momm F et al. (2007) Does radiation prevent 5-fluorouracil-induced colitis in the early phase of radiochemotherapy? A case report and literature review. Strahlenther Onkol 183(8): 459–463

    Article  PubMed  Google Scholar 

  • Sachsenmaier C (2001) Targeting protein kinases for tumor therapy. Onkologie 24(4): 346–355

    Article  PubMed  CAS  Google Scholar 

  • Shaked Y, Bertolini F et al. (2005) Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7(1): 101–111

    PubMed  CAS  Google Scholar 

  • Shaked Y, Emmenegger U et al. (2005) Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106(9): 3058–3061

    Article  PubMed  CAS  Google Scholar 

  • Sonveaux P, Brouet A et al. (2003). Irradiation-induced angiogenesis through the up-regulation of the nitric oxide pathway: implications for tumor radiotherapy. Cancer Res 63(5): 1012–1019

    PubMed  CAS  Google Scholar 

  • Thorwarth D, Eschmann SM et al. (2007). Hypoxia dose painting by numbers: a planning study. Int J Radiat Oncol Biol Phys 68(1): 291–300

    PubMed  Google Scholar 

  • Trott KR (2002) Strahlenwirkung auf Normalgewebe. München, Urban und Vogel

    Google Scholar 

  • Trott KR, Kamprad F (1999) Radiobiological mechanisms of anti-inflammatory radiotherapy. Radiother Oncol 51(3): 197–203

    Article  PubMed  CAS  Google Scholar 

  • Wedge SR, Kendrew J et al. (2005) AZD2171: a highly potent, orally bioavailable, vascular endothelial growth factor receptor-2 tyrosine kinase inhibitor for the treatment of cancer. Cancer Res 65(10): 4389–400

    Article  PubMed  CAS  Google Scholar 

  • Willett CG, Boucher Y et al. (2004) Direct evidence that the VEGF-specific antibody bevacizumab has antivascular effects in human rectal cancer. Nat Med 10(2): 145–147

    Article  PubMed  CAS  Google Scholar 

  • Willett CG, Duda DG et al. (2007) Complete pathological response to bevacizumab and chemoradiation in advanced rectal cancer. Nat Clin Pract Oncol 4(5): 316–321

    Article  PubMed  CAS  Google Scholar 

  • Winkler F, Kozin SV et al. (2004) Kinetics of vascular normalization by VEGFR2 blockade governs brain tumor response to radiation: role of oxygenation, angiopoietin-1, and matrix metalloproteinases. Cancer Cell 6(6): 553–563

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2009 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Schneider, V., Rischke, H., Drevs, J. (2009). Tumor Angiogenesis. In: Molls, M., Vaupel, P., Nieder, C., Anscher, M. (eds) The Impact of Tumor Biology on Cancer Treatment and Multidisciplinary Strategies. Medical Radiology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74386-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-74386-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-74385-9

  • Online ISBN: 978-3-540-74386-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics