Skip to main content

Biological Iron Oxidation and Sulfate Reduction in the Treatment of Acid Mine Drainage at Low Temperatures

  • Chapter
Psychrophiles: from Biodiversity to Biotechnology

Acid mine drainage (AMD) is the result of exposure of sulfidic seams to the oxidizing and leaching action of water—rain water, humidity, and groundwater— and is exacerbated by microorganisms that catalyze the solubilization of sulfide minerals by the regeneration of Fe3+ and oxidation of their dissolution products as the source of energy. Typical AMD has a low pH and a high sulfate and ferric iron concentration although other metals may also be present. The chemical composition of AMD varies with sulfide minerals associated with coal and metal mines. At low pH, ferric iron in AMD participates in the leaching action, as shown for pyrite (FeS2) and chalcopyrite (CuFeS2):

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ahonen L, Tuovinen OH (1989) Microbiological oxidation of ferrous iron at low temperatures. Appl Environ Microbiol 55:312–316.

    CAS  PubMed  Google Scholar 

  • Ahonen L, Tuovinen OH (1990) Kinetics of sulfur oxidation at suboptimal temperatures. Appl Environ Microbiol 56:560–562.

    CAS  PubMed  Google Scholar 

  • Ahonen L, Tuovinen OH (1991) Temperature effects on bacterial leaching of sulfide minerals in shake flask experiments. Appl Environ Microbiol 57:138–145.

    CAS  PubMed  Google Scholar 

  • Ahonen L, Tuovinen OH (1992) Bacterial oxidation of sulfide minerals in column leaching experiments at suboptimal temperatures. Appl Environ Microbiol 58:600–606.

    CAS  PubMed  Google Scholar 

  • Ahonen L, Hietanen P, Tuovinen OH (1990) Temperature relationships of iron-oxidizing bacteria. In: Karavaiko GI, Rossi G, Avakyan ZA (eds) International seminar on dump and underground bacterial leaching of metals from ores. Centre for International Projects, USSR Commission for United Nations Environment Programme, Moscow, USSR, pp 21–28.

    Google Scholar 

  • Benner SG, Blowes DW, Ptacek CJ, Mayer KU (2002) Rates of sulfate reduction and metal sulfide precipitation in a permeable reactive barrier. Appl Geochem 17:301–320.

    Article  CAS  Google Scholar 

  • Berthelot D, Leduc LG, Ferroni GD (1993) Temperature studies of iron-oxidizing autotrophs and acidophilic heterotrophs isolated from uranium mines. Can J Microbiol 39:384–388.

    Article  CAS  Google Scholar 

  • Blodau C, Hoffmann S, Peine A, Peiffer S (1998) Iron and sulfate reduction in the sediments of acidic mine Lake 116 (Brandenburg, Germany): rates and geochemical evaluation. Water Air Soil Pollut 108:249–270.

    Article  CAS  Google Scholar 

  • Canfield DE, Jørgensen BB, Fossing H, Glud R, Gundersen J, Ramsing NB, Thamdrup B, Hansen JW, Nielsen LP, Hall POJ (1993) Pathways of organic carbon oxidation in three continental margin sediments. Mar Geol 113:27–40.

    Article  CAS  PubMed  Google Scholar 

  • Canty M (1999) Innovative in situ treatment of acid mine drainage using sulphate-reducing bacteria. In: Leeson A, Alleman BC (eds) Phytoremediation and innovative strategies for specialized remedial applications. The Fifth International In Situ and On-Site Bioremediation Symposium. Battelle Press, Columbus, OH, pp 193–204.

    Google Scholar 

  • Castro JM, Wielinga BW, Gannon JE, Moore JN (1999) Stimulation of sulfate-reducing bacteria in lake water from a former open-pit mine through addition of organic wastes. Water Environ Res 71: 218–223.

    Article  CAS  Google Scholar 

  • Cavicchioli R (2006) Cold-adapted archaea. Nature Rev Microbiol 4, 331–343.

    Article  CAS  Google Scholar 

  • Christensen B, Laake M, Lien T (1996) Treatment of acid mine water by sulfate-reducing bacteria; results from a bench scale experiment. Water Res 30:1617–1624.

    Article  CAS  Google Scholar 

  • Dopson M, Hakala AK, Rahunen N, Kaksonen AH, Lindström EB, Puhakka JA (2007) Mineral leaching at low temperatures by pure and mixed cultures of acidophilic microorganisms. Biotechnol Bioengin, 97:1205–1215.

    Article  CAS  Google Scholar 

  • Dvorak DH, Hedin RS, Edenborn HM, McIntire PE (1992) Treatment of metal-contaminated water using bacterial sulphate reduction: Results from pilot-scale reactors. Biotechnol Bioengin 40:609–616.

    Article  CAS  Google Scholar 

  • Edenborn HM, Brickett LA (2001) Bacteria in gel probes: comparison of the activity of immobilized sulfate-reducing bacteria with in situ sulfate reduction in a wetland sediment. J Microbiol Meth 46:51–62.

    Article  CAS  Google Scholar 

  • Elberling B (2001) Environmental controls of the seasonal variation in oxygen uptake in sulfidic tailings deposited in a permafrost-affected area. Water Resour Res 37:99–107.

    Article  CAS  Google Scholar 

  • Elberling B (2004) Disposal of mine tailings in continuous permafrost areas: environmental aspects and future control strategies. In Kimble JM (ed) Cryosols: permafrost-affected soils, Springer, Berlinpp 677–698.

    Google Scholar 

  • Elberling B (2005) Temperature and oxygen control on pyrite oxidation in frozen mine tailings. Cold Regions Sci Technol 41:121–133.

    Article  Google Scholar 

  • Elberling B, Schippers A, Sand W (2000) Bacterial and chemical oxidation of pyritic mine tailings at low temperatures. J Contam Hydrol 41:225–238.

    Article  CAS  Google Scholar 

  • Elberling B, Søndergaard J, Jensen LA, Schmidt LB, Hansen BU, Asmund G, Bali -Zuni T, Hollesen J, Hanson S, Jansson P-E, Friborg T (2007) Arctic vegetation damage by winter-generated coal mining pollution released upon thawing. Environ Sci Technol 41:2407–2413.

    Article  CAS  PubMed  Google Scholar 

  • Farmer GH, Updegraff DM, Radehaus PM, Bates ER (1995) Metal removal and sulfate reduction in low-sulfate mine drainage. In Hinchee RE, Means JL, Burris DR (eds) Bioremediation of inorganics, Battelle Press, Columbus, OH, pp 17–24.

    Google Scholar 

  • Ferroni GD, Leduc LG, Todd M (1986) Isolation and temperature characterization of psychrotrophic strains of Thiobacillus ferrooxidans from the environment of a uranium mine. J Gen Appl Microbiol 32:169–175.

    Article  CAS  Google Scholar 

  • Gagliano WB, Brill MR, Bigham JM, Jones FS, Traina SJ (2004) Chemistry and mineralogy of ochreous sediments in a constructed mine drainage wetland. Geochim Cosmochim Acta 68:2119–2128.

    Article  CAS  Google Scholar 

  • Gibert O, de Pablo J, Cortina JL, Ayora C (2002) Treatment of acid mine drainage by sulphate-reducing bacteria using permeable reactive barriers: A review from laboratory to full-scale experiments. Rev Environ Sci Biotechnol 1:327–333.

    Article  CAS  Google Scholar 

  • Govind R, Yang W, Tabak HH (1999) Studies on biorecovery of metals from acid mine drainage. In Leeson A, Alleman, BC (eds) The Fifth International In situ and On-site Bioremediation Symposium. Battelle Press, Columbus, OH, pp 37–46.

    Google Scholar 

  • Groudev S, Kontopoulos A, Spasova I, Komnitsas K, Angelov A, Georgiev P (1998) In situ treatment of groundwater at Burgas Copper Mines, Bulgaria, by enhancing microbial sulphate reduction. In Herbert K, Kovar K (eds) Groundwater quality: remediation and protection, Proceedings of the GQ’98 Conference. IAHS Publication no. 250, pp 249–255.

    Google Scholar 

  • Groudeva VI, Groudev SN, Petkova S (1996) Biological treatment of acid drainage waters from a copper mine. Mineral Slov 28:318–320.

    CAS  Google Scholar 

  • Hao OJ (2000) Metal effects on sulfur cycle bacteria and metal removal by sulfate reducing bacteria. In: Lens PNL, Hulshoff Pol L (eds) Environmental technologies to treat sulfur pollution: principles and engineering. IWA Publishing, London, UK, pp 393–414.

    Google Scholar 

  • Herbert Jr RB, Benner SG, Blowes DW (1998) Reactive barrier treatment of groundwater contaminated by acid mine drainage: sulphur accumulation and sulphide formation. In Herbert K, Kovar K (eds) Groundwater quality: remediation and protection, Proceedings of the GQ’98 Conference. IAHS Publication No. 250, pp 451–457.

    Google Scholar 

  • Herlihy AT, Mills AL (1985) Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl Environ Microbiol 49:179–186.

    CAS  PubMed  Google Scholar 

  • Huisman JL, Schouten G, Schultz C (2006) Biologically produced sulphide for purification of process streams, effluent treatment and recovery of metals in the metal and mining industry. Hydrometallurgy 83:106–113.

    Article  CAS  Google Scholar 

  • Hulshoff Pol LW, Lens PNL, Weijma J, Stams AJM (2001) New developments in reactor and process technology for sulfate reduction. Water Sci Technol 44:67–76.

    CAS  Google Scholar 

  • Hustwit CC, Ackman TE, Erickson PE (1992) The role of oxygen-transfer in acid-mine drainage (AMD) treatment. Water Environ Res 64:817–823.

    CAS  Google Scholar 

  • Isaksen MF, Jørgensen BB (1996) Adaptation of psychrophilic and psychrotrophic sulfate-reducing bacteria to permanently cold marine environments. Appl Environ Microbiol 62:408–414.

    CAS  PubMed  Google Scholar 

  • Isaksen MF, Teske A (1996) Desulforhopalus vacuolatus gen. nov., sp. gov., a new moderately psychrophilic sulfate-reducing bacterium with gas vacuoles isolated from a temperate estuary. Arch Microbiol 166:160–168.

    Article  CAS  Google Scholar 

  • Johnson B (2000) Biological removal of sulfurous compounds from inorganic wastewaters. In: Lens P, Hulshoff Pol L (eds) Environmental technologies to treat sulfur pollution: principles and engineering. IWA Publishing, London, UK, pp 175–205.

    Google Scholar 

  • Jørgensen BB (1982) Mineralization of organic matter in the sea bed—the role of sulfate reduction. Nature 296:643–645.

    Article  Google Scholar 

  • Karnachuk OV, Pimenov NV, Yusupov SK, Frank YA, Kaksonen AH, Puhakka JA, Ivanov MV, Lindström EB, Tuovinen OH (2005) Sulfate reduction potential in sediments in the Norilsk mining area, northern Siberia. Geomicrobiol J 22:11–25.

    Article  CAS  Google Scholar 

  • Kinnunen P H-M, Puhakka JA (2004) High-rate ferric sulfate generation by a Leptospirillum ferriphilum-dominated biofilm and the role of jarosite in biomass retainment in fluidized-bed bioreactor. Biotechnol Bioeng 85:697–705.

    Article  CAS  PubMed  Google Scholar 

  • Kirby CS, Brady JAE (1998) Field determination of Fe2+ oxidation rates in acid mine drainage using a continuously–stirred tank reactor. Appl Geochem 13:509–520.

    Article  CAS  Google Scholar 

  • Knoblauch C, Jørgensen BB, Harder J (1999a) Community size and metabolic rates of psychrophilic sulfate-reducing bacteria in arctic marine sediments. Appl Environ Microbiol 65:4230–4233.

    CAS  PubMed  Google Scholar 

  • Knoblauch C, Sahm K, Jørgensen BB (1999b) Psychrophilic sulfate-reducing bacteria isolated from permanently cold arctic marine sediments: description of Desulfofrigus oceanence gen. nov., sp. nov., Desulfofrigus fragile sp. nov., Desulfofaba gelida gen., nov., sp. nov., Desulfotalea psychrophila gen. nov., sp. nov., and Desulfotalea arctica sp. nov. Int J System Evol Microbiol 49: 1631–1643.

    Article  CAS  Google Scholar 

  • Kovalenko TV, Karavaiko GI, Piskunov VP (1981) Effect of Fe3+ ions in the oxidation of ferrous iron by Thiobacillus ferrooxidans at various temperatures. Mikrobiologiya 51:156–160.

    Google Scholar 

  • Kupka D, Rzhepishevska OI, Dopson M, Lindström EB, Karnachuk OV, Tuovinen OH (2007) Bacterial oxidation of ferrous iron at low temperatures. Biotechnol Bioengin, 97:1470–1478.

    Article  CAS  Google Scholar 

  • Kuyucak N, St-Germain P (1994) In situ treatment of acid mine drainage by sulphate reducing bacteria in open pits: scale-up experiences. Proceedings of the Third International Conference on the Abatement of Acidic Drainage, Vol. 2. Pittsburg, PA, pp 303–310.

    Google Scholar 

  • Kuyucak N, Lyew D, St-Germain P, Wheeland KG (1991) In situ bacterial treatment of AMD in open pits. Proceeding of the Second International Conference on the Abatement of Acidic Drainage, Vol. 1, Montreal, Québec, Canada, pp 335–354.

    Google Scholar 

  • Kyhn C, Elberling B (2001) Frozen cover actions limiting AMD from mine waste deposited on land in arctic Canada. Cold Regions Sci Technol 32:133–142.

    Article  Google Scholar 

  • Langdahl BR, Ingvorsen K (1997) Temperature characteristics of bacterial iron solubilisation and 14C assimilation in naturally exposed sulfide ore material at Citronen Fjord, North Greenland (83°N). FEMS Microbiol Ecol 23:275–283.

    Article  CAS  Google Scholar 

  • Leduc D, Leduc LG, Ferroni GD (2002) Quantification of bacterial populations indigenous to acidic drainage streams. Water Air Soil Pollut 135:1–21.

    Article  CAS  Google Scholar 

  • Lein AY, Rusanov II, Savvichev AS, Pimenov NV, Miller YuM, Pavlova GA, Ivanov MV (1996) Biogeochemical processes of the sulfur and carbon cycles in the Kara Sea. Geochimia 11:1027–1044 [in Russian].

    Google Scholar 

  • Lens P, Vallero M, Esposito G, Zandvoort M (2002) Perspectives of sulfate reducing bioreactors in environmental biotechnology. Rev Environ Sci Biotechnol 1:311–325.

    Article  CAS  Google Scholar 

  • Ludwig RD, McGregor RG, Blowes DW, Benner SG, Mountjoy K (2002) A permeable reactive barrier for treatment of heavy metals. Ground Water 40:59–66.

    Article  CAS  PubMed  Google Scholar 

  • McNaughton K, Schlitt WJ (2000) Winter field test for heap leaching Carmacks copper ore in Canada’s Yukon Territory. Min Metall Proc 17:186–193.

    CAS  Google Scholar 

  • Meier J, Babenzien H-D, Wendt-Potthoff K (2004) Microbial cycling of iron and sulfur in sediments of acidic and pH-neutral mining lakes in Lusatia (Brandenburg, Germany). Biogeochemistry 67:135–156.

    Article  CAS  Google Scholar 

  • Meldrum JL, Jamieson HE, Dyke LD (2001) Oxidation of mine tailings from Rankin Inlet, Nunavut, at subzero temperatures. Can Geotechnol J 38:957–966.

    Article  CAS  Google Scholar 

  • Mustikkamäki U-P (2000) Metallipitoisten vesien biologisesta käsittelystä Outokummun kaivoksilla. Vuoriteollisuus 1: 44–47 [in Finnish].

    Google Scholar 

  • Murayama T, Konno Y, Sakata T, Imaizumi T (1986) Application of immobilized Thiobacillus ferrooxidans for large-scale treatment of acid mine drainage. Meth Enzymol 136:530–540.

    Article  Google Scholar 

  • Nakamura K, Noike T, Matsumoto J (1986) Effect of operation conditions on biological Fe2+ oxidation with rotating biological contactors. Water Res 20:73–77.

    Article  CAS  Google Scholar 

  • Nedwell DB (1989) Benthic microbial activity in an Antarctic coastal sediment at Signy Island, South Orkney Islands. Estuar Coast Shelf Sci 28:507–516.

    Article  CAS  Google Scholar 

  • Nicomrat D, Dick WA, Tuovinen OH (2006a) Assessment of the microbial community in a constructed wetland that receives acid coal mine drainage. Microb Ecol 51:83–89.

    Article  PubMed  Google Scholar 

  • Nicomrat D, Dick WA, Tuovinen OH (2006b) Microbial populations identified by fluorescence in-situ hybridization in a constructed wetland treating acid coal mine drainage. J Environ Qual 35:1329–1337.

    Article  CAS  PubMed  Google Scholar 

  • Okereke A, Stevens SE (1991) Kinetics of iron oxidation by Thiobacillus ferrooxidans. Appl Environ Microbiol 57:1052–1056.

    CAS  PubMed  Google Scholar 

  • Olem H, Unz RF (1977) Acid mine drainage treatment with rotating biological contactors. Biotechnol Bioeng 19:1475–1491.

    Article  CAS  Google Scholar 

  • Olem H, Unz RF (1980) Rotating-disc biological treatment of acid mine drainage. J Water Pollut Contr Fed 52:257–269.

    CAS  Google Scholar 

  • Omura T, Umita T, Nenov V, Aizawa J, Onuma M (1991) Biological oxidation of ferrous iron in high acid mine drainage by fluidized bed reactor. Water Sci Technol 23(7–9):1447–1456.

    CAS  Google Scholar 

  • Ozkaya B, Sahinkaya E, Nurmi P, Kaksonen AH, Puhakka JA (2007) Iron oxidation and precipitation in a simulated heap leaching solution in a Leptospirillum ferriphilum dominated biofilm reactor. Hydrometallurgy, 88:67–74.

    Article  CAS  Google Scholar 

  • Postgate JR (1984) The sulphate-reducing bacteria. Cambridge University Press, Cambridge.

    Google Scholar 

  • Praharaj T, Fortin D (2004) Determination of acid volatile sulfides and chromium reducible sulfides in Cu-Zn and Au mine tailings. Water Air Soil Poll 155:35–50.

    Article  CAS  Google Scholar 

  • Rabus R, Bruchert V, Amann J, Konneke M (2002) Physiological response to temperature changes of the marine sulfate-reducing bacterium Desulfobacterium autotrophicum. FEMS Microbiol Ecol 42:409–417.

    Article  CAS  PubMed  Google Scholar 

  • Riekkola-Vanhanen M (1999) In situ bioreclamation of acid mine drainage. In Kuusisto S, Isoaho S, Puhakka J (eds) Environmental science, technology and policy, Proceedings of the 4th Finnish Conference of Environmental Sciences. Finnish Society for Environmental Sciences. Water and Environmental Engineering, Report 9, Institute of Water and Environmental Engineering, Tampere University of Technology, Tampere, Finland, pp 22–25.

    Google Scholar 

  • Sahinkaya E, Özkaya B, Kaksonen AH, Puhakka JA (2007a) Sulfidogenic fluidized-bed treatment of metal-containing wastewater at low and high temperatures. Biotechnol Bioengin 96:1064–1072.

    Article  CAS  Google Scholar 

  • Sahinkaya E, Özkaya B, Kaksonen AH, Puhakka JA (2007b) Sulfidogenic fluidized-bed treatment of metal-containing wastewater at 8 and 65 °C temperatures is limited by acetate oxidation. Water Res, 41:2706–2714.

    Article  CAS  PubMed  Google Scholar 

  • Sass H, Berchtold M, Branke J, König H, Cypionka H, Babenzien H-D (1998) Psychrotolerant sulfate-reducing bacteria from an oxic freshwater sediment, description of Desulfovibrio cuneatus sp. nov. and Desulfovibrio litoralis sp. nov. System Appl Microbiol 21:212–219.

    CAS  Google Scholar 

  • Søndergaard J, Elberling B, Asmund G, Gudum C, Iversen KM (2007) Temporal trends of dissolved weathering products released from a high Arctic coal mine waste rock pile in Svalbad (78°N). Appl Geochem 22:1025–1028.

    Article  CAS  Google Scholar 

  • TsukamotoTK, Killion HA, Miller GC (2004) Column experiments for microbiological treatment of acid mine drainage: low-temperature, low-pH and matrix investigations. Water Res 38:1405–1418.

    Article  CAS  PubMed  Google Scholar 

  • Vandieken V, Knoblauch C, Jørgensen BB (2006) Desulfovibrio frigidus sp. nov. and Desulfovibrio ferrireducens sp. nov., psychrotolerant bacteria isolated from Arctic fjord sediments (Svalbard) with the ability to reduce Fe(III). Int J System Evol Microbiol 56:681–685.

    Article  CAS  Google Scholar 

  • Vestola E (2004) Treatment of acid mine drainage by sulphate reducing bacteria. Master’s Thesis, Helsinki University of Technology, Helsinki, Finland [in Finnish].

    Google Scholar 

  • Wildeman T, Cevaal J, Whiting K, Gusek J, Scheuering J (1994) Laboratory and pilot-scale studies on the treatment of acid rock drainage at a closed gold-mining operation in California. Proceedings of the International Land Reclamation and Mine Drainage Conference and the Third International Conference on the Abatement of Acidic Drainage, Pittsburg, PA, pp 379–386.

    Google Scholar 

  • Wildeman T, Gusek J, Cevaal J, Whiting K, Scheuering J (1995) Biotreatment of acid rock drainage at a gold-mining operation. In Hinchee RE, Means JL, Burris DR (eds) Bioremediation of inorganics, Battelle Press, Columbus, OH, pp 141–148.

    Google Scholar 

  • Yabuuchi E, Imanaga Y (1976) Oxidation of ferrous ions in mine drainage by iron-oxidizing bacteria. World Min Met Technol 2:943–956.

    CAS  Google Scholar 

  • Zadow JG (1986) Utilization of milk components: Whey. In: Robinson RK (ed) Modern dairy technology, vol 1. Advances in Milk Processing, Elsevier, London, UK, pp 273–316.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2008 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kaksonen, A.H., Dopson, M., Karnachuk, O., Tuovinen, O.H., Puhakka, J.A. (2008). Biological Iron Oxidation and Sulfate Reduction in the Treatment of Acid Mine Drainage at Low Temperatures. In: Margesin, R., Schinner, F., Marx, JC., Gerday, C. (eds) Psychrophiles: from Biodiversity to Biotechnology. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-74335-4_25

Download citation

Publish with us

Policies and ethics