A Methodology for Analyzing Case Retrieval from a Clustered Case Memory

  • Albert Fornells
  • Elisabet Golobardes
  • Josep Maria Martorell
  • Josep Maria Garrell
  • Núria Macià
  • Ester Bernadó
Conference paper

DOI: 10.1007/978-3-540-74141-1_9

Volume 4626 of the book series Lecture Notes in Computer Science (LNCS)
Cite this paper as:
Fornells A., Golobardes E., Martorell J.M., Garrell J.M., Macià N., Bernadó E. (2007) A Methodology for Analyzing Case Retrieval from a Clustered Case Memory. In: Weber R.O., Richter M.M. (eds) Case-Based Reasoning Research and Development. ICCBR 2007. Lecture Notes in Computer Science, vol 4626. Springer, Berlin, Heidelberg

Abstract

Case retrieval from a clustered case memory consists in finding out the clusters most similar to the new input case, and then retrieving the cases from them. Although the computational time is improved, the accuracy rate may be degraded if the clusters are not representative enough due to data geometry. This paper proposes a methodology for allowing the expert to analyze the case retrieval strategies from a clustered case memory according to the required computational time improvement and the maximum accuracy reduction accepted. The mechanisms used to assess the data geometry are the complexity measures. This methodology is successfully tested on a case memory organized by a Self-Organization Map.

Keywords

Case Retrieval Case Memory Organization Soft Case- Based Reasoning Complexity Measures Self-Organization Maps 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • Albert Fornells
    • 1
  • Elisabet Golobardes
    • 1
  • Josep Maria Martorell
    • 1
  • Josep Maria Garrell
    • 1
  • Núria Macià
    • 1
  • Ester Bernadó
    • 1
  1. 1.Grup de Recerca en Sistemes Intel.ligents, Enginyeria i Arquitectura La Salle, Universitat Ramon Llull, Quatre Camins 2, 08022 BarcelonaSpain