Chapter

Machine Learning and Data Mining in Pattern Recognition

Volume 4571 of the series Lecture Notes in Computer Science pp 533-547

A Unified View of Objective Interestingness Measures

  • Céline HébertAffiliated withGREYC, CNRS - UMR 6072, Université de Caen, Campus Côte de Nacre, F-14032 Caen Cédex
  • , Bruno CrémilleuxAffiliated withGREYC, CNRS - UMR 6072, Université de Caen, Campus Côte de Nacre, F-14032 Caen Cédex

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Association rule mining often results in an overwhelming number of rules. In practice, it is difficult for the final user to select the most relevant rules. In order to tackle this problem, various interestingness measures were proposed. Nevertheless, the choice of an appropriate measure remains a hard task and the use of several measures may lead to conflicting information. In this paper, we give a unified view of objective interestingness measures. We define a new framework embedding a large set of measures called SBMs and we prove that the SBMs have a similar behavior. Furthermore, we identify the whole collection of the rules simultaneously optimizing all the SBMs. We provide an algorithm to efficiently mine a reduced set of rules among the rules optimizing all the SBMs. Experiments on real datasets highlight the characteristics of such rules.