Efficient 1D and 2D Daubechies Wavelet Transforms with Application to Signal Processing

  • Piotr Lipinski
  • Mykhaylo Yatsymirskyy
Conference paper

DOI: 10.1007/978-3-540-71629-7_44

Part of the Lecture Notes in Computer Science book series (LNCS, volume 4432)
Cite this paper as:
Lipinski P., Yatsymirskyy M. (2007) Efficient 1D and 2D Daubechies Wavelet Transforms with Application to Signal Processing. In: Beliczynski B., Dzielinski A., Iwanowski M., Ribeiro B. (eds) Adaptive and Natural Computing Algorithms. ICANNGA 2007. Lecture Notes in Computer Science, vol 4432. Springer, Berlin, Heidelberg

Abstract

In this paper we have introduced new, efficient algorithms for computing one- and two-dimensional Daubechies wavelet transforms of any order, with application to signal processing. These algorithms has been constructed by transforming Daubechies wavelet filters into weighted sum of trivial filters. The theoretical computational complexity of the algorithms has been evaluated and compared to pyramidal and ladder ones. In order to prove the correctness of the theoretical estimation of computational complexity of the algorithms, sample implementations has been supplied. We have proved that the algorithms introduced here are the most robust of all class of Daubechies transforms in terms of computational complexity, especially in two dimensional case.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer Berlin Heidelberg 2007

Authors and Affiliations

  • Piotr Lipinski
    • 1
  • Mykhaylo Yatsymirskyy
    • 2
  1. 1.Division of Computer Networks, Technical University of Lodz, Stefanowskiego 18/22, LodzPoland
  2. 2.Department of Computer Science, Technical University of Lodz., Wolczanska 215, LodzPoland

Personalised recommendations