Voronoi Diagram of Polygonal Chains under the Discrete Fréchet Distance

  • Sergey Bereg
  • Kevin Buchin
  • Maike Buchin
  • Marina Gavrilova
  • Binhai Zhu
Conference paper

DOI: 10.1007/978-3-540-69733-6_35

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5092)
Cite this paper as:
Bereg S., Buchin K., Buchin M., Gavrilova M., Zhu B. (2008) Voronoi Diagram of Polygonal Chains under the Discrete Fréchet Distance. In: Hu X., Wang J. (eds) Computing and Combinatorics. COCOON 2008. Lecture Notes in Computer Science, vol 5092. Springer, Berlin, Heidelberg

Abstract

Polygonal chains are fundamental objects in many applications like pattern recognition and protein structure alignment. A well-known measure to characterize the similarity of two polygonal chains is the (continuous/discrete) Fréchet distance. In this paper, for the first time, we consider the Voronoi diagram of polygonal chains in d-dimension under the discrete Fréchet distance. Given a set \({\cal C}\) of n polygonal chains in d-dimension, each with at most k vertices, we prove fundamental properties of such a Voronoi diagram VDF(\({\cal C}\)). Our main results are summarized as follows.
  • The combinatorial complexity of VD\(_F({\cal C})\) is at most O(ndk + ε).

  • The combinatorial complexity of VD\(_F({\cal C})\) is at least Ω(ndk) for dimension d = 1,2; and Ω(nd(k − 1) + 2) for dimension d > 2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sergey Bereg
    • 1
  • Kevin Buchin
    • 2
  • Maike Buchin
    • 2
  • Marina Gavrilova
    • 3
  • Binhai Zhu
    • 4
  1. 1.Department of Computer ScienceUniversity of Texas at DallasRichardsonUSA
  2. 2.Department of Information and Computing SciencesUniversiteit UtrechtThe Netherlands
  3. 3.Department of Computer ScienceUniversity of CalgaryCalgaryCanada
  4. 4.Department of Computer ScienceMontana State UniversityBozemanUSA

Personalised recommendations