Optimal Experimental Design in the Modelling of Pattern Formation

  • Adrián López García de Lomana
  • Àlex Gómez-Garrido
  • David Sportouch
  • Jordi Villà-Freixa
Conference paper

DOI: 10.1007/978-3-540-69384-0_66

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5101)
Cite this paper as:
García de Lomana A.L., Gómez-Garrido À., Sportouch D., Villà-Freixa J. (2008) Optimal Experimental Design in the Modelling of Pattern Formation. In: Bubak M., van Albada G.D., Dongarra J., Sloot P.M.A. (eds) Computational Science – ICCS 2008. ICCS 2008. Lecture Notes in Computer Science, vol 5101. Springer, Berlin, Heidelberg

Abstract

Gene regulation plays a major role in the control of developmental processes. Pattern formation, for example, is thought to be regulated by a limited number genes translated into transcription factors that control the differential expression of other genes in different cells in a given tissue. We focused on the Notch pathway during the formation of chess-like patterns along development. Simplified models exist of the patterning by lateral inhibition due to the Notch-Delta signalling cascade. We show here how parameters from the literature are able to explain the steady-state behavior of model tissues of several sizes, although they are not able to reproduce time series of experiments. In order to refine the parameters set for data from real experiments we propose a practical implementation of an optimal experimental design protocol that combines parameter estimation tools with sensitivity analysis, in order to minimize the number of additional experiments to perform.

Keywords

lateral inhibition GRN optimal experimental design multicellular system 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Adrián López García de Lomana
    • 1
  • Àlex Gómez-Garrido
    • 1
  • David Sportouch
    • 1
  • Jordi Villà-Freixa
    • 1
  1. 1.Grup de Recerca en Informàtica BiomèdicaIMIM-Universitat Pompeu FabraBarcelonaSpain

Personalised recommendations