In vivo Brain Imaging of Human Exposure to Nicotine and Tobacco

* Final gross prices may vary according to local VAT.

Get Access

Abstract

While most cigarette smokers endorse a desire to quit smoking, only 14–49% will achieve abstinence after 6 months or more of treatment. A greater understanding of the effects of smoking on brain function may result in improved pharmacological and behavioral interventions for this condition. Research groups have examined the effects of acute and chronic nicotine/cigarette exposure on brain activity using functional imaging; the purpose of this chapter is to synthesize findings from such studies and present a coherent model of brain function in smokers. Responses to acute administration of nicotine/smoking include reduced global brain activity; activation of the prefrontal cortex, thalamus, and visual system; activation of the thalamus and visual cortex during visual cognitive tasks; and increased dopamine (DA) concentration in the ventral striatum/nucleus accumbens. Responses to chronic nicotine/cigarette exposure include decreased monoamine ox-idase (MAO) A and B activity in the basal ganglia and a reduction in α4β2 nicotinic acetylcholine receptor (nAChR) availability in the thalamus and putamen (accompanied by an overall upregulation of these receptors). These findings indicate that smoking enhances neurotransmission through cortico–basal ganglia–thalamic circuits by direct stimulation of nAChRs, indirect stimulation via DA release or MAO inhibition, or a combination of these and possibly other factors. Activation of this circuitry may be responsible for the effects of smoking seen in tobacco-dependent smokers, such as improvements in attentional performance, mood, anxiety, and irritability.