Synthesising Novel Movements through Latent Space Modulation of Scalable Control Policies

  • Sebastian Bitzer
  • Ioannis Havoutis
  • Sethu Vijayakumar
Conference paper

DOI: 10.1007/978-3-540-69134-1_20

Part of the Lecture Notes in Computer Science book series (LNCS, volume 5040)
Cite this paper as:
Bitzer S., Havoutis I., Vijayakumar S. (2008) Synthesising Novel Movements through Latent Space Modulation of Scalable Control Policies. In: Asada M., Hallam J.C.T., Meyer JA., Tani J. (eds) From Animals to Animats 10. SAB 2008. Lecture Notes in Computer Science, vol 5040. Springer, Berlin, Heidelberg

Abstract

We propose a novel methodology for learning and synthesising whole classes of high dimensional movements from a limited set of demonstrated examples that satisfy some underlying ’latent’ low dimensional task constraints. We employ non-linear dimensionality reduction to extract a canonical latent space that captures some of the essential topology of the unobserved task space. In this latent space, we identify suitable parametrisation of movements with control policies such that they are easily modulated to generate novel movements from the same class and are robust to perturbations. We evaluate our method on controlled simulation experiments with simple robots (reaching and periodic movement tasks) as well as on a data set of very high-dimensional human (punching) movements. We verify that we can generate a continuum of new movements from the demonstrated class from only a few examples in both robotic and human data.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2008

Authors and Affiliations

  • Sebastian Bitzer
    • 1
  • Ioannis Havoutis
    • 1
  • Sethu Vijayakumar
    • 1
  1. 1.Institute of Perception, Action and BehaviourUniversity of EdinburghEdinburghUK

Personalised recommendations