cGMP: Generators, Effectors and Therapeutic Implications

Volume 191 of the series Handbook of Experimental Pharmacology pp 93-109

Structural and Biochemical Aspects of Tandem GAF Domains

  • Joachim E. SchultzAffiliated withPharmazeutisches Institut der Universität Tübingen

* Final gross prices may vary according to local VAT.

Get Access


The GAF domain is a small-molecule-binding-domain (SMBD) identified in >7400 proteins. However, mostly the ligands are unknown. Here we mainly deal with regulatory N-terminal tandem GAF domains, GAF-A and GAF-B, of four mammalian phosphodiesterases (PDEs) and of two cyanobacterial adenylyl cyclases (ACs) which bind cyclic nucleotides. These tandem GAFs are preceded by N-terminal sequences of variable lengths and a function of their own. In mammals, GAF domains are found only in cyclic nucleotide PDEs 2, 5, 6, 10, and 11. cAMP is the ligand for phosphodiesterase 10, cGMP for the others. Two cyanobacterial ACs, CyaB1 and 2, carry regulatory cAMP-binding tandem GAF domains which are similar in sequence to the mammalian ones. These tandem GAF domains have a prominent NKFDE motif which contributes to ligand binding in an as yet unknown manner. Contradicting structures (parallel vs. antiparallel) are available for the tandem GAF domains of PDE 2 and AC CyaB2. In addition, the structures of phosphodiesterase 5 and 10 GAF monomers with bound ligands have been solved. In all instances, cyclic nucleotide binding involves specific protein-ligand interactions within a tightly closed binding pocket and minimal solvent exposure of the ligand. The PDE tandem GAF domains can functionally substitute for the tandem of the cyanobacterial AC CyaB1; e.g. cGMP-regulation is grafted onto the AC using tandem GAFs from PDEs 2, 5 and 11. Studies of GAF domain-regulated PDEs are hampered by the identities of regulator and substrate molecules. Using AC CyaB1 as a reporter which uses ATP as a substrate solves this issue and makes the tandem GAF domains of mammalian PDEs available for detailed kinetic and mechanistic studies. In addition, drugs which potentially act on PDE regulatory domains may be assayed with such a novel test system.