Skip to main content

Symmetry in Integer Linear Programming

  • Chapter
  • First Online:

Abstract

An integer linear program (ILP) is symmetric if its variables can be permuted without changing the structure of the problem. Areas where symmetric ILPs arise range from applied settings (scheduling on identical machines), to combinatorics (code construction), and to statistics (statistical designs construction). Relatively small symmetric ILPs are extremely difficult to solve using branch-and-cut codes oblivious to the symmetry in the problem. This paper reviews techniques developed to take advantage of the symmetry in an ILP during its solution. It also surveys related topics, such as symmetry detection, polyhedral studies of symmetric ILPs, and enumeration of all non isomorphic optimal solutions.

Supported by ONR grant N00014-03-1-0133.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F.A. Aloul, A. Ramani, I.L.Markov, and K.A. Sakallah, Solving difficult instances of Booleansatisfiability in the presence of symmetry, IEEE Transactions on CAD 22 (2003) 1117–1137.

    Article  Google Scholar 

  2. K.M. Anstreicher, Recent advances in the solution of quadratic assignment problems, Mathematical Programming 97 (2003) 27–42.

    Article  MathSciNet  MATH  Google Scholar 

  3. D.L. Applegate, R.E. Bixby, V. Chvátal, and W.J. Cook, The Traveling Salesman Problem, A Computational Study, Princeton, 2006.

    Google Scholar 

  4. A. von Arnim, R. Schrader, and Y. Wang, The permutahedron of N-sparse posets, Mathematical Programming 75 (1996) 1–18.

    MathSciNet  MATH  Google Scholar 

  5. L. Babai, E.M. Luks, and Á. Seress, Fast management of permutation groups I, SIAMJournal on Computing 26 (1997) 1310–1342.

    Article  MathSciNet  MATH  Google Scholar 

  6. E. Balas, A linear characterization of permutation vectors, Management Science Research Report 364, Carnegie Mellon University, Pittsburgh, PA, 1975.

    Google Scholar 

  7. C. Barnhart, E.L. Johnson, G.L. Nemhauser, M.W.P. Savelsbergh, and P.H. Vance, Branchand-price: Column generation for solving huge integer programs, Operations Research 46 (1998) 316–329.

    Article  MathSciNet  MATH  Google Scholar 

  8. M.S. Bazaraa and O. Kirca, A branch-and-bound based heuristic for solving the quadraticassignment problem, Naval Research Logistics Quarterly 30 (1983) 287–304.

    Article  MathSciNet  MATH  Google Scholar 

  9. R. Bertolo, P. Östergård, and W.D. Weakley, An updated table of binary/ternary mixed coveringcodes, Journal of Combinatorial Designs 12 (2004) 157–176.

    Article  MathSciNet  MATH  Google Scholar 

  10. W. Bosma, J. Cannon, and C. Playoust, The Magma algebra system. I. The User Language, Journal of Symbolic Computations 24 (1997) 235–265.

    Article  MathSciNet  MATH  Google Scholar 

  11. C.A. Brown, L. Finkelstein, and P.W. Purdom, Backtrack searching in the presence of symmetry, Lecture Notes in Computer Science 357, Springer, 1989, pp. 99–110.

    MATH  Google Scholar 

  12. C.A. Brown, L. Finkelstein, and P.W. Purdom, Backtrack Searching in the Presence of Symmetry, Nordic Journal of Computing 3 (1996) 203–219.

    MathSciNet  MATH  Google Scholar 

  13. C. Buchheim and M. J¨unger, Detecting symmetries by branch&cut, Mathematical Programming 98 (2003) 369–384.

    Article  MathSciNet  MATH  Google Scholar 

  14. C. Buchheim and M. Jünger, Linear optimization over permutation groups, Discrete Optimization 2 (2005) 308–319.

    Article  MathSciNet  MATH  Google Scholar 

  15. D.A. Bulutoglu and F. Margot, Classification of orthogonal arrays by integer programming, Journal of Statistical Planning and Inference 138 (2008) 654–666. 682 Franc¸ois Margot

    Article  MathSciNet  MATH  Google Scholar 

  16. G. Butler, Computing in permutation and matrix groups II: Backtrack algorithm, Mathematics of Computation 39 (1982) 671–680.

    MathSciNet  MATH  Google Scholar 

  17. G. Butler, Fundamental Algorithms for Permutation Groups, Lecture Notes in Computer Science 559, Springer, 1991.

    Google Scholar 

  18. G. Butler and J.J. Cannon, Computing in permutation and matrix groups I: Normal closure,commutator subgroups, series, Mathematics of Computation 39 (1982) 663–670.

    MathSciNet  MATH  Google Scholar 

  19. G. Butler and W.H. Lam, A general backtrack algorithm for the isomorphism problem ofcombinatorial objects, Journal of Symbolic Computation 1 (1985) 363–381.

    Article  MathSciNet  MATH  Google Scholar 

  20. P.J. Cameron, Permutation Groups, London Mathematical Society, Student Text 45, Cambridge University Press,1999.

    Book  MATH  Google Scholar 

  21. M. Campêlo and R.C. Corrêa, A Lagrangian decomposition for the maximum stable set problem, Working Paper (2008), Universidade Federal do Cear´a, Brazil.

    Google Scholar 

  22. M. Campêlo, V.A. Campos, and R.C. Corrêa, Um algoritmo de Planos-de-Corte para onúumero cromático fracionário de um grafo, Pesquisa Operational 29 (2009) 179–193.

    Article  Google Scholar 

  23. M. Campêlo, R. Corrêa, and Y. Frota, Cliques, holes and the vertex coloring polytope, Information Processing Letters 89 (2004) 159–164.

    Article  MathSciNet  MATH  Google Scholar 

  24. M. Campêlo, V. Campos, and R. Corrêa, On the asymmetric representatives formulation forthe vertex coloring problem, Electronic Notes in Discrete Mathematics 19 (2005) 337–343.

    Article  MathSciNet  MATH  Google Scholar 

  25. M. Campêlo, V. Campos, and R. Corrêa, On the asymmetric representatives formulation forthe vertex coloring problem, Discrete Applied Mathematics 156 (2008) 1097–1111.

    Article  MathSciNet  MATH  Google Scholar 

  26. R.D. Cameron, C.J. Colbourn, R.C. Read, and N.C.Wormald, Cataloguing the graphs on 10vertices, Journal of Graph Theory 9 (1985) 551–562.

    Article  MathSciNet  MATH  Google Scholar 

  27. T. Christof and G. Reinelt, Decomposition and parallelization techniques for enumeratingthe facets of combinatorial polytopes, International Journal on Computational Geometry and Applications 11 (2001) 423–437.

    Article  MATH  Google Scholar 

  28. G. Cohen, I. Honkala, S. Litsyn, and A. Lobstein, Covering Codes, North Holland, 1997.

    Google Scholar 

  29. C.J. Colbourn and J.H. Dinitz (eds.): The CRC Handbook of Combinatorial Designs, CRC Press, 2007.

    Google Scholar 

  30. G. Cooperman, L. Finkelstein, and N. Sarawagi, A random base change algorithm for permutationgroups, Proceedings of the International Symposium on Symbolic and Algebraic Computations – ISSAC 90, ACM Press, 1990, pp. 161–168.

    Google Scholar 

  31. J. Crawford, M.L. Ginsberg, E. Luks, and A. Roy, Symmetry-breaking predicates for searchproblems, KR’96: Principles of Knowledge Representation and Reasoning (L.C. Aiello, J. Doyle, and S. Shapiro, eds.), 1996, pp. 148–159.

    Google Scholar 

  32. P. Darga, M.H. Liffiton, K.A. Sakallah, and I.L. Markov, Exploiting structure in symmetrygeneration for CNF, Proceedings of the 41st Design Automation Conference, San Diego 2004, pp. 530–534.

    Google Scholar 

  33. Z. Degraeve, W. Gochet, and R. Jans, Alternative formulations for a layout problem in thefashion industry, European Journal of Operational Research 143 (2002) 80–93.

    Article  MATH  Google Scholar 

  34. M. Desrochers and F. Soumis, A column generation approach to the urban transit crewscheduling problem, Transportation Science 23 (1989) 1–13.

    Article  MATH  Google Scholar 

  35. A. Deza, K. Fukuda, T. Mizutani, and C. Vo, On the face lattice of the metric polytope, Discrete and Computational Geometry: Japanese Conference (Tokyo, 2002), Lecture Notes in Computer Science 2866, Springer, 2003, pp. 118–128.

    MATH  Google Scholar 

  36. A. Deza, K. Fukuda, D. Pasechnik, and M. Sato, On the skeleton of the metric polytope, Discrete and Computational Geometry: Japanese Conference (Tokyo, 2000), in Lecture Notes in Computer Science 2098, Springer, 2001, pp. 125–136.

    Google Scholar 

  37. Y. Dumas, M. Desrochers, and F. Soumis, The pickup and delivery problem with time windows, European Journal of Operations Research 54 (1991) 7–22.

    Article  MATH  Google Scholar 

  38. M. Elf, C. Gutwenger, M. J¨unger, and G. Rinaldi, Branch-and-cut algorithms for combinatorialoptimization and their implementation in ABACUS, in [59] (2001) 155–222.

    Google Scholar 

  39. T. Fahle, S. Shamberger, and M. Sellmann, Symmetry breaking, Proc. 7th International Conference on Principles and Practice of Constraint Programming – CP 2001, Lecture Notes in Computer Science 2239, Springer, 2001, pp. 93–107. 17 Symmetry in Integer Linear Programming 683

    Google Scholar 

  40. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh, Symmetry inmatrix models, working paper APES-30-2001, 2001.

    Google Scholar 

  41. P. Flener, A. Frisch, B. Hnich, Z. Kiziltan, I. Miguel, J. Pearson, and T. Walsh, Breaking rowand column symmetries in matrix models, Proc. 8th International Conference on Principles and Practice of Constraint Programming – CP 2002, Lecture Notes in Computer Science 2470, Springer, 2002, pp. 462–476.

    Google Scholar 

  42. P. Flener, J. Pearson, M. Sellmann, P. van Hentenryck, and M. Ågren, Dynamic structural symmetry breaking for constraint satisfaction problems, DOI 10.1007/s10601-008-9059-7, Constraints 14 (2009).

    Google Scholar 

  43. F. Focacci andM.Milano, Global cut framework for removing symmetries, Proc. 7th International Conference on Principles and Practice of Constraint Programming – CP 2001, Lecture Notes in Computer Science 2239, Springer, 2001, pp. 77–92.

    Google Scholar 

  44. E.J. Friedman, Fundamental domains for integer programs with symmetries, Proceedings of COCOA 2007, Lecture Notes in Computer Science 4616, 2007, pp. 146–153.

    Google Scholar 

  45. I.P. Gent, W. Harvey, and T. Kelsey, Groups and constraints: Symmetry breaking duringsearch, Proc. 8th International Conference on Principles and Practice of Constraint Programming – CP 2002, Lecture Notes in Computer Science 2470, Springer, 2002, pp. 415–430.

    Google Scholar 

  46. I.P. Gent, W. Harvey, T. Kelsey, and S. Linton, Generic SBDD using computational grouptheory, Proc. 9th International Conference on Principles and Practice of Constraint Programming – CP 2003, Lecture Notes in Computer Science 2833, Springer, 2003, pp. 333–347.

    MATH  Google Scholar 

  47. I.P. Gent, T. Kelsey, S. Linton, I. McDonald, I. Miguel, and B. Smith, Conditional symmetrybreaking, Proc. 11th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science 3709, 2005, pp. 333–347.

    Google Scholar 

  48. I.P. Gent, T. Kelsey, S.T. Linton, J. Pearson, and C.M. Roney-Dougal, Groupoids and conditionalsymmetry, Proc. 13th International Conference on Principles and Practice of Constraint Programming, Lecture Notes in Computer Science 4741, 2007, pp. 823–830.

    Google Scholar 

  49. I.P. Gent, K.E. Petrie, and J.-F. Puget, Symmetry in constraint programming, Handbook of Constraint Programming (F. Rossi, P. van Beek, and T. Walsh eds.), Elsevier, 2006, pp. 329– 376.

    Google Scholar 

  50. I.P. Gent and B.M. Smith, Symmetry breaking in constraint programming, Proceedings of ECAI-2002, IOS Press, 2002, pp. 599–603.

    Google Scholar 

  51. D.M. Gordon and D.R. Stinson, Coverings, The CRC Handbook of Combinatorial Designs (C.J. Colbourn and J.H. Dinitz, eds.), CRC Press, 2007, pp. 365–372.

    Google Scholar 

  52. L.C. Grove and C.T. Benson, Finite Reflection Groups, Springer, 1985.

    Google Scholar 

  53. H. Hämäläinen, I. Honkala, S. Litsyn, and P. Östergård, Football pools–A game for mathematicians, American Mathematical Monthly 102 (1995) 579–588.

    Google Scholar 

  54. C.M. Hoffman, Group-Theoretic Algorithms and Graph Isomorphism, Lecture Notes in Computer Science 136, Springer, 1982.

    Google Scholar 

  55. D.F. Holt, B. Eick, and E.A. O’Brien, Handbook of Computational Group Theory, Chapman & Hall/CRC, 2004.

    Google Scholar 

  56. R. Jans, Solving lotsizing problems on parallel identical machines using symmetry breakingconstraints, INFORMS Journal on Computing 21 (2009) 123–136.

    Article  MathSciNet  MATH  Google Scholar 

  57. R. Jans and Z. Degraeve, A note on a symmetrical set covering problem: The lottery problem, European Journal of Operational Research 186 (2008) 104–110.

    Article  MathSciNet  MATH  Google Scholar 

  58. M. Jerrum, A compact representation for permutation groups, Journal of Algorithms 7 (1986) 60–78.

    Article  MathSciNet  MATH  Google Scholar 

  59. M. Jünger and D. Naddef (eds.), Computational Combinatorial Optimization, Lecture Notes in Computer Science 2241, Springer, 2001.

    MATH  Google Scholar 

  60. V. Kaibel, M. Peinhardt, and M.E. Pfetsch, Orbitopal fixing, Proceedings of the 12th International Integer Programming and Combinatorial Optimization Conference (M. Fischetti and D.P.Williamson, eds.), Lecture Notes in Computer Science 4513, Springer, 2007, pp. 74–88.

    Google Scholar 

  61. V. Kaibel and M.E. Pfetsch, Packing and partitioning orbitopes,Mathematical Programming 114 (2008) 1–36.

    Article  MathSciNet  MATH  Google Scholar 

  62. D.L. Kreher and D.R. Stinson, Combinatorial Algorithms, Generation, Enumeration, andSearch, CRC Press, 1999. 684 François Margot

    Google Scholar 

  63. E.L. Lawler, J.K. Lenstra, A.H.G. Rinnooy Kan, and D.B. Shmoys, The Traveling SalesmanProblem, Wiley, 1985.

    Google Scholar 

  64. J.S. Leon, On an algorithm for finding a base and a strong generating set for a group givenby generating permutations, Mathematics of Computation 35 (1980) 941–974.

    Article  MathSciNet  MATH  Google Scholar 

  65. J.S. Leon, Computing automorphism groups of combinatorial objects, Computational Group Theory (M.D. Atkinson, ed.), Academic Press, 1984, pp. 321–335.

    Google Scholar 

  66. L. Liberti, Automatic generation of symmetry-breaking constraints, Proceedings of COCOA 2008, Lecture Notes in Computer Science 5165, 2008, pp. 328–338.

    MathSciNet  MATH  Google Scholar 

  67. J. Linderoth, F. Margot, and G. Thain, Improving bounds on the football pool problem viasymmetry: Reduction and high-throughput computing, to appear in INFORMS Journal on Computing, 2009.

    Google Scholar 

  68. C. Luetolf and F. Margot, A catalog of minimally nonideal matrices, Mathematical Methods of Operations Research 47 (1998) 221–241.

    Article  MathSciNet  MATH  Google Scholar 

  69. E. Luks, Permutation groups and polynomial-time computation, Groups and Computation (L. Finkelstein and W. Kantor, eds.), DIMACS Series in Discrete Mathematics and Theoretical Computer Science 11 (1993) 139–175.

    Google Scholar 

  70. J.L. Marenco and P.A. Rey, The football pool polytope, Electronic Notes in Discrete Mathematics 30 (2008) 75–80.

    Article  MathSciNet  MATH  Google Scholar 

  71. http://wpweb2.tepper.cmu.edu/fmargot/index.html

  72. F. Margot, Pruning by isomorphism in branch-and-cut, Mathematical Programming 94 (2002) 71–90.

    Article  MathSciNet  MATH  Google Scholar 

  73. F.Margot, Small covering designs by branch-and-cut,Mathematical Programming 94 (2003) 207–220.

    Article  MathSciNet  MATH  Google Scholar 

  74. F. Margot, Exploiting orbits in symmetric ILP, Mathematical Programming 98 (2003) 3–21.

    Article  MathSciNet  MATH  Google Scholar 

  75. F. Margot, Symmetric ILP: Coloring and small integers, Discrete Optimization 4 (2007) 40– 62.

    Article  MathSciNet  MATH  Google Scholar 

  76. T. Mautor and C. Roucairol, A new exact algorithm for the solution of quadratic assignmentproblems, Discrete Applied Mathematics 55 (1994) 281–293.

    Article  MathSciNet  MATH  Google Scholar 

  77. B.D. McKay, Nauty User’s Guide (Version 2.2), Computer Science Department, Australian National University, Canberra.

    Google Scholar 

  78. B.D. McKay, Isomorph-free exhaustive generation, Journal of Algorithms 26 (1998) 306– 324.

    Article  MathSciNet  MATH  Google Scholar 

  79. A. Mehrotra and M.A. Trick, A column generation approach for graph coloring, INFORMS Journal on Computing 8 (1996) 344–354.

    Article  MATH  Google Scholar 

  80. A. Mehrotra and M.A. Trick, Cliques and clustering: A combinatorial approach, Operations Research Letters 22 (1998) 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  81. I. M´endez-D`ıaz and P. Zabala, A branch-and-cut algorithm for graph coloring, Discrete Applied Mathematics 154 (2006) 826–847.

    Article  MathSciNet  MATH  Google Scholar 

  82. W.H. Mills and R.C. Mullin, Coverings and packings, Contemporary Design Theory: A Collection of Surveys (J.H. Dinitz and D.R. Stinson, eds.), Wiley, 1992, pp. 371–399.

    Google Scholar 

  83. G.L. Nemhauser and S. Park, A polyhedral approach to edge colouring, Operations Research Letters 10 (1991) 315–322.

    Article  MathSciNet  MATH  Google Scholar 

  84. G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, Wiley, 1988.

    Google Scholar 

  85. P. Östergård and W. Blass, On the size of optimal binary codes of length 9 and coveringradius 1, IEEE Transactions on Information Theory 47 (2001) 2556–2557.

    Article  MathSciNet  MATH  Google Scholar 

  86. P. Östergård and A. Wassermann, A new lower bound for the football pool problem for sixmatches, Journal of Combinatorial Theory Ser. A 99 (2002) 175–179.

    Article  MathSciNet  MATH  Google Scholar 

  87. J. Ostrowski, Personal communication, 2007.

    Google Scholar 

  88. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio, Orbital branching, IPCO 2007: The Twelfth Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 4513, Springer, 2007, pp. 104–118.

    Google Scholar 

  89. J. Ostrowski, J. Linderoth, F. Rossi, and S. Smirglio, Constraint orbital branching, IPCO 2008: The Thirteenth Conference on Integer Programming and Combinatorial Optimization, Lecture Notes in Computer Science 5035, Springer, 2008, pp. 225–239. 17 Symmetry in Integer Linear Programming 685

    Google Scholar 

  90. M.W. Padberg and G. Rinaldi, A branch-and-cut algorithm for the resolution of large scalesymmetric travelling salesman problems, SIAM Review 33 (1991) 60–100.

    Article  MathSciNet  MATH  Google Scholar 

  91. K.E. Petrie and B.M. Smith, Comparison of symmetry breaking methods in constraint programming, In Proceedings of SymCon05, 2005.

    Google Scholar 

  92. F. Plastria, Formulating logical implications in combinatorial optimisation, European Journal of Operational Research 140 (2002) 338–353.

    Article  MathSciNet  MATH  Google Scholar 

  93. J.-F. Puget, On the satisfiability of symmetrical constrainted satisfaction problems, Proceedings of the 7th International Symposium on Methodologies for Intelligent Systems, Lecture Notes in Artificial Intelligence 689, Springer, 1993, pp. 350–361.

    Google Scholar 

  94. J.-F. Puget, Symmetry breaking using stabilizers, Proc. 9th International Conference on Principles and Practice of Constraint Programming – CP 2003, Lecture Notes in Computer Science 2833, Springer, 2003, pp. 585–599.

    Google Scholar 

  95. J.-F. Puget, Automatic detection of variable and value symmetries, Proc. 11th International Conference on Principles and Practice of Constraint Programming – CP 2005, Lecture Notes in Computer Science 3709, Springer, 2005, pp. 475–489.

    Google Scholar 

  96. J.-F. Puget, Symmetry breaking revisited, Constraints 10 (2005) 23–46.

    Article  MathSciNet  MATH  Google Scholar 

  97. J.-F. Puget, A comparison of SBDS and dynamic lex constraints, In Proceeding of SymCon06, 2006, pp. 56–60.

    Google Scholar 

  98. A. Ramani, F.A. Aloul, I.L.Markov, and K.A. Sakallah, Breaking instance-independent symmetriesin exact graph coloring, Journal of Artificial Intelligence Research 26 (2006) 191– 224.

    Article  MathSciNet  MATH  Google Scholar 

  99. A. Ramani and I.L.Markov, Automatically exploiting symmetries in constraint programming, CSCLP 2004 (B. Faltings et al., eds.), Lecture Notes in Artificial Intelligence 3419, Springer, 2005, pp. 98–112.

    Google Scholar 

  100. R.C. Read, Every one a winner or how to avoid isomorphism search when cataloguing combinatorialconfigurations, Annals of Discrete Mathematics 2 (1978) 107–120.

    Article  MathSciNet  MATH  Google Scholar 

  101. P.A. Rey, Eliminating redundant solutions of some symmetric combinatorial integer programs, Electronic Notes in Discrete Mathematics 18 (2004) 201–206.

    Article  MathSciNet  MATH  Google Scholar 

  102. J.J. Rotman, An Introduction to the Theory of Groups, 4th edition, Springer, 1994.

    Google Scholar 

  103. D. Salvagnin, A Dominance Procedure for Integer Programming, Master’s thesis, University of Padova, 2005.

    Google Scholar 

  104. E. Seah and D.R. Stinson, An enumeration of non-isomorphic one-factorizations and Howelldesigns for the graph K 10minus a one-factor, Ars Combinatorica 21 (1986) 145–161.

    MATH  Google Scholar 

  105. Á. Seress, Nearly linear time algorithms for permutation groups: An interplay between theoryand practice, Acta Applicandae Mathematicae 52 (1998) 183–207.

    Article  MathSciNet  MATH  Google Scholar 

  106. Á. Seress, Permutation Group Algorithms, Cambridge Tracts in Mathematics 152, Cambridge University Press, 2003.

    Google Scholar 

  107. H.D. Sherali, B.M.P. Fraticelli, and R.D. Meller, Enhanced model formulations for optimalfacility layout, Operations Research 51 (2003) 629–644.

    Article  MathSciNet  MATH  Google Scholar 

  108. H.D. Sherali and J.C. Smith, Improving discrete model representations via symmetry considerations, Management Science 47 (2001) 1396–1407.

    Article  MATH  Google Scholar 

  109. H.D. Sherali, J.C. Smith, and Y. Lee, Enhanced model representations for an intra-ring synchronousoptical network design problem allowing demand splitting, INFORMS Journal on Computing 12 (2000) 284–298.

    Article  MATH  Google Scholar 

  110. B. Smith, Reducing symmetry in a combinatorial design problem, Proc. 8th International Conference on Principles and Practice of Constraint Programming – CP 2002, Lecture Notes in Computer Science 2470, Springer, 2002, pp. 207–213.

    Google Scholar 

  111. B.M. Smith, S.C. Brailsford, P.M. Hubbard, and H.P. Williams, The progressive party problem:Integer linear programming and constraint programming compared, Constraints 1 (1996) 119–138.

    Article  MathSciNet  Google Scholar 

  112. R.G. Stanton and J.A. Bates, A computer search for B-coverings, in Combinatorial Mathematics VII (R.W. Robinson, G.W. Southern, and W.D. Wallis, eds.), Lecture Notes in Computer Science 829, Springer, 1980, pp. 37–50.

    Google Scholar 

  113. The GAP Group: GAP – Groups, Algorithms, and Programming, Version 4.4.10 (2007), http://www.gap-system.org. 686 Franc¸ois Margot

  114. P.H. Vance, Branch-and-price algorithms for the one-dimensional cutting stock problem, Computational Optimization and Applications 9 (1998) 111–228.

    Article  MathSciNet  MATH  Google Scholar 

  115. P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser, Solving binary cutting stockproblems by column generation and branch-and-bound, Computational Optimization and Applications 3 (1994) 111–130.

    Article  MathSciNet  MATH  Google Scholar 

  116. P.H. Vance, C. Barnhart, E.L. Johnson, and G.L. Nemhauser, Airline crew scheduling: A newformulation and decomposition algorithm, Operations Research 45 (1997) 188–200.

    Article  MATH  Google Scholar 

  117. L.A. Wolsey, Integer Programming, Wiley, 1998.

    Google Scholar 

  118. M. Yannakakis, Expressing combinatorial optimization problems by linear programs, Journal of Computer and System Sciences 43 (1991) 441–466.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Margot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Margot, F. (2010). Symmetry in Integer Linear Programming. In: Jünger, M., et al. 50 Years of Integer Programming 1958-2008. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-68279-0_17

Download citation

Publish with us

Policies and ethics