Visualizing Collaborative Time-Varying Scientific Datasets

  • J. M. Sharif
  • M. S. S. Omar
  • M. S. A. Latiff
  • M. A. Ngadi
Conference paper

DOI: 10.1007/978-3-540-68017-8_151

Part of the IFMBE Proceedings book series (IFMBE, volume 15)
Cite this paper as:
Sharif J.M., Omar M.S.S., Latiff M.S.A., Ngadi M.A. (2007) Visualizing Collaborative Time-Varying Scientific Datasets. In: Ibrahim F., Osman N.A.A., Usman J., Kadri N.A. (eds) 3rd Kuala Lumpur International Conference on Biomedical Engineering 2006. IFMBE Proceedings, vol 15. Springer, Berlin, Heidelberg

Abstract

Our perceptive of the scientific datasets has largely relied on numerical and statistical analysis of data from experimental dimension and computer simulation result [4][14][11][12][13]. In particular, we consider a simulated 3D time-varying model of scientific datasets and examine the temporal correlation among datasets. Our goal is to contrive effective visual representations to assist scientists in ascertaining temporal correlation among intricate and apparently chaotic scientific datasets. We propose a hybrid application with combination of streamline, global and local color scale and opacity scheme for spatio-temporal collaborative depiction. We illustrated also few images that can offer an effective tool for visually mining 3D time-varying scientific datasets.

Keywords

scientific data visualization hybrid scheme coding theory color scale time-varying data spatio-temporal visualization molecular dynamics visual representation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Copyright information

© Springer-Verlag Berlin Heidelberg 2007

Authors and Affiliations

  • J. M. Sharif
    • 2
  • M. S. S. Omar
    • 1
  • M. S. A. Latiff
    • 2
  • M. A. Ngadi
    • 2
  1. 1.Bioinformatics Research Lab, Faculty of ScienceUniversity Technology of MalaysiaJohorMalaysia
  2. 2.Department of Computer System & CommunicationUniversity Technology of MalaysiaSkudaiMalaysia

Personalised recommendations