Chapter

Lateral Aligment of Epitaxial Quantum Dots

Part of the series Nano Science and Technolgy pp 525-541

Directed Self-Assembly of Quantum Dots by Local-Chemical-Potential Control via Strain Engineering on Patterned Substrates

* Final gross prices may vary according to local VAT.

Get Access

Abstract

The rapid growth of computing speed and storage density in the microelectronics industry has been enabled by the continued miniaturization of electronic and magnetoelectronic devices. As the size of structures is reduced to the nanometer scale, their electronic, optical, and magnetic properties may become distinctively different from those of their bulk counterparts. The extremely small size and large surface-to-volume ratio of nanostructures provide quantum and novel surface/interface effects, opening up a wide range of potential applications in sensing, data storage, and communications, beyond what is currently possible using. In many applications involving nanostructures, uniform size and spatial ordering are required or desired. In most approaches, however, fabrication of nanostructures with size and spatial uniformity remains a challenging problem, and especially so in the strain mediated self-assembly of nanostructures.

Two different routes are being taken toward nanofabrication: one is the top-down approach represented by advanced lithography, and the other is the bottom-up approach, represented by atom manipulation or self-assembly/selforganization processes. The top-down approach patterns a macroscopic surface to ever finer scales, while the bottom-up approach attempts to use atom manipulation and self-assembly/self-organization processes to form functional nanostructures.