Chapter

Advances in Solid State Physics

Volume 43 of the series Advances in Solid State Physics pp 505-518

Date:

Pulsed Laser Deposition (PLD) -- A Versatile Thin Film Technique

  • Hans-Ulrich KrebsAffiliated withInstitut für Materialphysik, Universität Göttingen Email author 
  • , Martin WeisheitAffiliated withInstitut für Materialphysik, Universität Göttingen
  • , Jörg FaupelAffiliated withInstitut für Materialphysik, Universität Göttingen
  • , Erik SüskeAffiliated withInstitut für Materialphysik, Universität Göttingen
  • , Thorsten ScharfAffiliated withInstitut für Materialphysik, Universität Göttingen
  • , Christian FuhseAffiliated withInstitut für Materialphysik, Universität Göttingen
  • , Michael StörmerAffiliated withInstitut für Materialphysik, Universität Göttingen
  • , Kai SturmAffiliated withInstitut für Materialphysik, Universität Göttingen
  • , Michael SeibtAffiliated withIV. Physikalisches Institut, Universität Göttingen
    • , Harald KijewskiAffiliated withInstitut für Rechtsmedizin, Universität Göttingen
    • , Dorit NelkeAffiliated withInstitut für Physikalische Chemie, Universität Göttingen
    • , Elena PanchenkoAffiliated withInstitut für Physikalische Chemie, Universität Göttingen
    • , Michael BubackAffiliated withInstitut für Physikalische Chemie, Universität Göttingen

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Pulsed laser deposition (PLD) is for many reasons a versatile technique. Since with this method the energy source is located outside the chamber, the use of ultrahigh vacuum (UHV) as well as ambient gas is possible. Combined with a stoichiometry transfer between target and substrate this allows depositing all kinds of different materials, e.g., high-temperature superconductors, oxides, nitrides, carbides, semiconductors, metals and even polymers or fullerenes can be grown with high deposition rates. The pulsed nature of the PLD process even allows preparing complex polymer-metal compounds and multilayers. In UHV, implantation and intermixing effects originating in the deposition of energetic particles lead to the formation of metastable phases, for instance nanocrystalline highly supersaturated solid solutions and amorphous alloys. The preparation in inert gas atmosphere makes it even possible to tune the film properties (stress, texture, reflectivity, magnetic properties ...) by varying the kinetic energy of the deposited particles. All this makes PLD an alternative deposition technique for the growth of high-quality thin films.