Date: 29 Jul 2003

Pulsed Laser Deposition (PLD) -- A Versatile Thin Film Technique

* Final gross prices may vary according to local VAT.

Get Access

Abstract

Pulsed laser deposition (PLD) is for many reasons a versatile technique. Since with this method the energy source is located outside the chamber, the use of ultrahigh vacuum (UHV) as well as ambient gas is possible. Combined with a stoichiometry transfer between target and substrate this allows depositing all kinds of different materials, e.g., high-temperature superconductors, oxides, nitrides, carbides, semiconductors, metals and even polymers or fullerenes can be grown with high deposition rates. The pulsed nature of the PLD process even allows preparing complex polymer-metal compounds and multilayers. In UHV, implantation and intermixing effects originating in the deposition of energetic particles lead to the formation of metastable phases, for instance nanocrystalline highly supersaturated solid solutions and amorphous alloys. The preparation in inert gas atmosphere makes it even possible to tune the film properties (stress, texture, reflectivity, magnetic properties ...) by varying the kinetic energy of the deposited particles. All this makes PLD an alternative deposition technique for the growth of high-quality thin films.