Skip to main content

Who Is the Best Connected Scientist?A Study of Scientific Coauthorship Networks

  • Part III Information Networks & Social Networks
  • Chapter
  • First Online:

Part of the book series: Lecture Notes in Physics ((LNP,volume 650))

Abstract

Using data from computer databases of scientific papers in physics, biomedical research, and computer science, we have constructed networks of collaboration between scientists in each of these disciplines. In these networks two scientists are considered connected if they have coauthored one or more papers together. We have studied many statistical properties of our networks, including numbers of papers written by authors, numbers of authors per paper, numbers of collaborators that scientists have, typical distance through the network from one scientist to another, and a variety of measures of connectedness within a network, such as closeness and betweenness. We further argue that simple networks such as these cannot capture the variation in the strength of collaborative ties and propose a measure of this strength based on the number of papers coauthored by pairs of scientists, and the number of other scientists with whom they worked on those papers. Using a selection of our results, we suggest a variety of possible ways to answer the question “Who is the best connected scientist?”

This is a preview of subscription content, log in via an institution.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • 1. S. Wasserman and K. Faust, Social Network Analysis. Cambridge University Press, Cambridge (1994).

    Google Scholar 

  • 2. J. Scott, Social Network Analysis: A Handbook. Sage, London, 2nd edition (2000).

    Google Scholar 

  • 3. S. H. Strogatz, Exploring complex networks. Nature 410, 268–276 (2001).

    Google Scholar 

  • 4. A.-L. Barabási, Linked: The New Science of Networks. Perseus, Cambridge, MA (2002).

    Google Scholar 

  • 5. D. J. Watts, Six Degrees: The Science of a Connected Age. Norton, New York (2003).

    Google Scholar 

  • 6. M. E. J. Newman, The structure and function of complex networks. SIAM Review 45, 167–256 (2003).

    Google Scholar 

  • 7. P. Mariolis, Interlocking directorates and control of corporations: The theory of bank control. Social Science Quarterly 56, 425–439 (1975).

    Google Scholar 

  • 8. J. Galaskiewicz and P. V. Marsden, Interorganizational resource networks: Formal patterns of overlap. Social Science Research 7, 89–107 (1978).

    Google Scholar 

  • 9. J. F. Padgett and C. K. Ansell, Robust action and the rise of the Medici, 1400–1434. Am. J. Sociol. 98, 1259–1319 (1993).

    Google Scholar 

  • 10. A. Rapoport and W. J. Horvath, A study of a large sociogram. Behavioral Science 6, 279–291 (1961).

    Google Scholar 

  • 11. T. J. Fararo and M. Sunshine, A Study of a Biased Friendship Network. Syracuse University Press, Syracuse (1964).

    Google Scholar 

  • 12. H. R. Bernard, P. D. Killworth, M. J. Evans, C. McCarty, and G. A. Shelley, Studying social relations cross-culturally. Ethnology 2, 155–179 (1988).

    Google Scholar 

  • 13. J. Moody, Race, school integration, and friendship segregation in America. Am. J. Sociol. 107, 679–716 (2001).

    Google Scholar 

  • 14. M. Faloutsos, P. Faloutsos, and C. Faloutsos, On power-law relationships of the internet topology. Computer Communications Review 29, 251–262 (1999).

    Google Scholar 

  • 15. Q. Chen, H. Chang, R. Govindan, S. Jamin, S. J. Shenker, and W. Willinger, The origin of power laws in Internet topologies revisited. In Proceedings of the 21st Annual Joint Conference of the IEEE Computer and Communications Societies, IEEE Computer Society (2002).

    Google Scholar 

  • 16. R. Albert, H. Jeong, and A.-L. Barabási, Diameter of the world-wide web. Nature 401, 130–131 (1999).

    Google Scholar 

  • 17. A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan, R. Stata, A. Tomkins, and J. Wiener, Graph structure in the web. Computer Networks 33, 309–320 (2000).

    Google Scholar 

  • 18. H. Ebel, L.-I. Mielsch, and S. Bornholdt, Scale-free topology of e-mail networks. Phys. Rev. E 66, 035103 (2002).

    Google Scholar 

  • 19. M. E. J. Newman, S. Forrest, and J. Balthrop, Email networks and the spread of computer viruses. Phys. Rev. E 66, 035101 (2002).

    Google Scholar 

  • 20. L. A. Adamic, R. M. Lukose, A. R. Puniyani, and B. A. Huberman, Search in power-law networks. Phys. Rev. E 64, 046135 (2001).

    Google Scholar 

  • 21. M. Ripeanu, I. Foster, and A. Iamnitchi, Mapping the Gnutella network: Properties of large-scale peer-to-peer systems and implications for system design. IEEE Internet Computing 6, 50–57 (2002).

    Google Scholar 

  • 22. D. J. Watts and S. H. Strogatz, Collective dynamics of ‘small-world’ networks. Nature 393, 440–442 (1998).

    Google Scholar 

  • 23. J. Abello, A. Buchsbaum, and J. Westbrook, A functional approach to external graph algorithms. In Proceedings of the 6th European Symposium on Algorithms, Springer, Berlin (1998).

    Google Scholar 

  • 24. P. Sen, S. Dasgupta, A. Chatterjee, P. A. Sreeram, G. Mukherjee, and S. S. Manna, Small-world properties of the Indian railway network. Phys. Rev. E 67, 036106 (2003).

    Google Scholar 

  • 25. A. Davis, B. B. Gardner, and M. R. Gardner, Deep South. University of Chicago Press, Chicago (1941).

    Google Scholar 

  • 26. G. F. Davis and H. R. Greve, Corporate elite networks and governance changes in the 1980s. Am. J. Sociol. 103, 1–37 (1997).

    Google Scholar 

  • 27. L. A. N. Amaral, A. Scala, M. Barthélémy, and H. E. Stanley, Classes of small-world networks. Proc. Natl. Acad. Sci. USA 97, 11149–11152 (2000).

    Google Scholar 

  • 28. B. Wellman, J. Salaff, D. Dimitrova, L. Garton, M. Gulia, and C. Haythornthwaite, Computer networks as social networks. Annual Review of Sociology 22, 213–238 (1996).

    Google Scholar 

  • 29. P. Hoffman, The Man Who Loved Only Numbers. Hyperion, New York (1998).

    Google Scholar 

  • 30. P. Erdős and M. Kac, The Gaussian law of errors in the theory of additive number theoretic functions. Am. J. Math. 26, 738–742 (1940).

    Google Scholar 

  • 31. R. M. Ziff, G. E. Uhlenbeck, and M. Kac, The ideal Bose-Einstein gas, revisited. Phys. Rep. 32, 169–248 (1977).

    Google Scholar 

  • 32. M. E. J. Newman and R. M. Ziff, Efficient Monte Carlo algorithm and high-precision results for percolation. Phys. Rev. Lett. 85, 4104–4107 (2000).

    Google Scholar 

  • 33. V. Batagelj and A. Mrvar, Some analyses of Erdős collaboration graph. Social Networks 22, 173–186 (2000).

    Google Scholar 

  • 34. J. W. Grossman, The evolution of the mathematical research collaboration graph. Congressus Numerantium 158, 202–212 (2002).

    Google Scholar 

  • 35. J. W. Grossman and P. D. F. Ion, On a portion of the well-known collaboration graph. Congressus Numerantium 108, 129–131 (1995).

    Google Scholar 

  • 36. L. Egghe and R. Rousseau, Introduction to Informetrics. Elsevier, Amsterdam (1990).

    Google Scholar 

  • 37. H. Kretschmer, Coauthorship networks of invisible college and institutionalized communities. Scientometrics 30, 363–369 (1994).

    Google Scholar 

  • 38. O. Persson and M. Beckmann, Locating the network of interacting authors in scientific specialties. Scientometrics 33, 351–366 (1995).

    Google Scholar 

  • 39. G. Melin and O. Persson, Studying research collaboration using co-authorships. Scientometrics 36, 363–377 (1996).

    Google Scholar 

  • 40. Y. Ding, S. Foo, and G. Chowdhury, A bibliometric analysis of collaboration in the field of information retrieval. Intl. Inform. and Libr. Rev. 30, 367–376 (1999).

    Google Scholar 

  • 41. M. Bordens and I. Gómez, Collaboration networks in science. In H. B. Atkins and B. Cronin (eds.), The Web of Knowledge: A Festschrift in Honor of Eugene Garfield, Information Today, Medford, NJ (2000).

    Google Scholar 

  • 42. D. J. de S. Price, Networks of scientific papers. Science 149, 510–515 (1965).

    Google Scholar 

  • 43. P. O. Seglen, The skewness of science. J. Amer. Soc. Inform. Sci. 43, 628–638 (1992).

    Google Scholar 

  • 44. S. Redner, How popular is your paper? An empirical study of the citation distribution. Eur. Phys. J. B 4, 131–134 (1998).

    Google Scholar 

  • 45. M. E. J. Newman, Scientific collaboration networks: I. Network construction and fundamental results. Phys. Rev. E 64, 016131 (2001).

    Article  Google Scholar 

  • 46. M. E. J. Newman, Scientific collaboration networks: II. Shortest paths, weighted networks, and centrality. Phys. Rev. E 64, 016132 (2001).

    Google Scholar 

  • 47. M. E. J. Newman, Clustering and preferential attachment in growing networks. Phys. Rev. E 64, 025102 (2001).

    Google Scholar 

  • 48. A.-L. Barabási, H. Jeong, E. Ravasz, Z. Néda, A. Schuberts, and T. Vicsek, Evolution of the social network of scientific collaborations. Physica A 311, 590–614 (2002).

    Google Scholar 

  • 49. H. B. O’Connell, Physicists thriving with paperless publishing. Preprint physics/0007040 (2000).

    Google Scholar 

  • 50. A. J. Lotka, The frequency distribution of scientific production. J. Wash. Acad. Sci. 16, 317–323 (1926).

    Google Scholar 

  • 51. H. Voos, Lotka and information science. Journal of the American Society for Information Science (July-August 1974), 270–272 (1974).

    Google Scholar 

  • 52. M. L. Pao, An empirical examination of Lotka’s law. Journal of the American Society for Information Science (January 1986), 26–33 (1986).

    Google Scholar 

  • 53. M. E. J. Newman, The structure of scientific collaboration networks. Proc. Natl. Acad. Sci. USA 98, 404–409 (2001).

    Google Scholar 

  • 54. P. Erdős and A. Rényi, On the evolution of random graphs. Publications of the Mathematical Institute of the Hungarian Academy of Sciences 5, 17–61 (1960).

    Google Scholar 

  • 55. B. Bollobás, Random Graphs. Academic Press, New York, 2nd edition (2001).

    Google Scholar 

  • 56. M. E. J. Newman, S. H. Strogatz, and D. J. Watts, Random graphs with arbitrary degree distributions and their applications. Phys. Rev. E 64, 026118 (2001).

    Google Scholar 

  • 57. A.-L. Barabási and R. Albert, Emergence of scaling in random networks. Science 286, 509–512 (1999).

    Google Scholar 

  • 58. J. M. Kleinberg, Navigation in a small world. Nature 406, 845 (2000).

    Google Scholar 

  • 59. P. L. Krapivsky and S. Redner, Organization of growing random networks. Phys. Rev. E 63, 066123 (2001).

    Google Scholar 

  • 60. T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to Algorithms. MIT Press, Cambridge, MA, 2nd edition (2001).

    Google Scholar 

  • 61. H. Kautz, B. Selman, and M. Shah, ReferralWeb: Combining social networks and collaborative filtering. Comm. ACM 40, 63–65 (1997).

    Google Scholar 

  • 62. L. C. Freeman, A set of measures of centrality based upon betweenness. Sociometry 40, 35–41 (1977).

    Google Scholar 

  • 63. U. Brandes, A faster algorithm for betweenness centrality. Journal of Mathematical Sociology 25, 163–177 (2001).

    Google Scholar 

  • 64. K.-I. Goh, B. Kahng, and D. Kim, Universal behavior of load distribution in scale-free networks. Phys. Rev. Lett. 87, 278701 (2001).

    Google Scholar 

  • 65. S. Milgram, The small world problem. Psychology Today 2, 60–67 (1967).

    Google Scholar 

  • 66. I. de S. Pool and M. Kochen, Contacts and influence. Social Networks 1, 1–48 (1978).

    Google Scholar 

  • 67. B. Bollobás, A probabilistic proof of an asymptotic formula for the number of labelled regular graphs. European Journal of Combinatorics 1, 311–316 (1980).

    Google Scholar 

  • 68. T. Łuczak, Sparse random graphs with a given degree sequence. In A. M. Frieze and T. Łuczak (eds.), Proceedings of the Symposium on Random Graphs, Poznań 1989, pp. 165–182, John Wiley, New York (1992).

    Google Scholar 

  • 69. M. Molloy and B. Reed, A critical point for random graphs with a given degree sequence. Random Structures and Algorithms 6, 161–179 (1995).

    Google Scholar 

  • 70. M. Molloy and B. Reed, The size of the giant component of a random graph with a given degree sequence. Combinatorics, Probability and Computing 7, 295–305 (1998).

    Google Scholar 

  • 71. M. E. J. Newman, D. J. Watts, and S. H. Strogatz, Random graph models of social networks. Proc. Natl. Acad. Sci. USA 99, 2566–2572 (2002).

    Google Scholar 

  • 72. R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, Network Flows: Theory, Algorithms, and Applications. Prentice Hall, Upper Saddle River, NJ (1993).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Eli Ben-Naim Hans Frauenfelder Zoltan Toroczkai

Rights and permissions

Reprints and permissions

About this chapter

Cite this chapter

Newman, M.E. Who Is the Best Connected Scientist?A Study of Scientific Coauthorship Networks. In: Ben-Naim, E., Frauenfelder, H., Toroczkai, Z. (eds) Complex Networks. Lecture Notes in Physics, vol 650. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-44485-5_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-540-44485-5_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-22354-2

  • Online ISBN: 978-3-540-44485-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics