Chapter

Numerical Mathematics and Advanced Applications

pp 299-307

Discretization Error Estimates for an Optimal Control Problem in a Nonconvex Domain

  • Th. ApelAffiliated withInstitut für Mathematik und Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Universität der Bundeswehr München
  • , A. RöschAffiliated withJohann Radon Institute for Computational and Applied Mathematics (RICAM), Austrian Academy of Sciences
  • , G. WinklerAffiliated withInstitut für Mathematik und Bauinformatik, Fakultät für Bauingenieur- und Vermessungswesen, Universität der Bundeswehr München

* Final gross prices may vary according to local VAT.

Get Access

Abstract

An optimal control problem for a 2-d elliptic equation and with pointwise control constraints is investigated. The domain is assumed to be polygonal but non-convex. The corner singularities are treated by a priori mesh grading. A second order approximation of the optimal control is constructed by a projection of the discrete adjoint state. Here we summarize the results from [1] and add further numerical tests.